Matching Items (8)
Filtering by

Clear all filters

153329-Thumbnail Image.png
Description
Seismic observations have revealed two large low shear velocity provinces (LLSVPs) in the lowermost mantle beneath Pacific and Africa. One hypothesis for the origin of LLSVPs is that they are caused by accumulation of subducted oceanic crust on the core-mantle boundary (CMB). Here, I perform high resolution geodynamical calculations to

Seismic observations have revealed two large low shear velocity provinces (LLSVPs) in the lowermost mantle beneath Pacific and Africa. One hypothesis for the origin of LLSVPs is that they are caused by accumulation of subducted oceanic crust on the core-mantle boundary (CMB). Here, I perform high resolution geodynamical calculations to test this hypothesis. The result shows that it is difficult for a thin (~ 6 km) subducted oceanic crust to accumulate on the CMB, and the major part of it is viscously stirred into the surrounding mantle. Another hypothesis for the origin of LLSVPs is that they are caused by thermochemical piles of more-primitive material which is remnant of Earth's early differentiation. In such case, a significant part of the subducted oceanic crust would enter the more-primitive reservoir, while other parts are either directly entrained into mantle plumes forming on top of the more-primitive reservoir or stirred into the background mantle. As a result, mantle plumes entrain a variable combination of compositional components including more-primitive material, old oceanic crust which first enters the more-primitive reservoir and is later entrained into mantle plumes with the more-primitive material, young oceanic crust which is directly entrained into mantle plumes without contacting the more-primitive reservoir, and depleted background mantle material. The result reconciles geochemical observation of multiple compositional components and varying ages of oceanic crust in the source of ocean-island basalts. Seismic studies have detected ultra-low velocity zones (ULVZs) in some localized regions on the CMB. Here, I present 3D thermochemical calculations to show that the distribution of ULVZs provides important information about their origin. ULVZs with a distinct composition tend to be located at the edges of LLSVPs, while ULVZs solely caused by partial melting tend to be located inboard from the edges of LLSVPs. This indicates that ULVZs at the edges of LLSVPs are best explained by distinct compositional heterogeneity, while ULVZs located insider of LLSVPs are better explained by partial melting. The results provide additional constraints for the origin of ULVZs.
ContributorsLi, Mingming (Author) / McNamara, Allen K (Thesis advisor) / Garnero, Edward J (Committee member) / Shim, Sang-Heon (Committee member) / Tyburczy, James (Committee member) / Clarke, Amanda (Committee member) / Arizona State University (Publisher)
Created2015
156778-Thumbnail Image.png
Description
The dynamic Earth involves feedbacks between the solid crust and both natural and anthropogenic fluid flows. Fluid-rock interactions drive many Earth phenomena, including volcanic unrest, seismic activities, and hydrological responses. Mitigating the hazards associated with these activities requires fundamental understanding of the underlying physical processes. Therefore, geophysical monitoring in combination

The dynamic Earth involves feedbacks between the solid crust and both natural and anthropogenic fluid flows. Fluid-rock interactions drive many Earth phenomena, including volcanic unrest, seismic activities, and hydrological responses. Mitigating the hazards associated with these activities requires fundamental understanding of the underlying physical processes. Therefore, geophysical monitoring in combination with modeling provides valuable tools, suitable for hazard mitigation and risk management efforts. Magmatic activities and induced seismicity linked to fluid injection are two natural and anthropogenic processes discussed in this dissertation.

Successful forecasting of the timing, style, and intensity of a volcanic eruption is made possible by improved understanding of the volcano life cycle as well as building quantitative models incorporating the processes that govern rock melting, melt ascending, magma storage, eruption initiation, and interaction between magma and surrounding host rocks at different spatial extent and time scale. One key part of such models is the shallow magma chamber, which is generally directly linked to volcano’s eruptive behaviors. However, its actual shape, size, and temporal evolution are often not entirely known. To address this issue, I use space-based geodetic data with high spatiotemporal resolution to measure surface deformation at Kilauea volcano. The obtained maps of InSAR (Interferometric Synthetic Aperture Radar) deformation time series are exploited with two novel modeling schemes to investigate Kilauea’s shallow magmatic system. Both models can explain the same observation, leading to a new compartment model of magma chamber. Such models significantly advance the understanding of the physical processes associated with Kilauea’s summit plumbing system with potential applications for volcanoes around the world.

The unprecedented increase in the number of earthquakes in the Central and Eastern United States since 2008 is attributed to massive deep subsurface injection of saltwater. The elevated chance of moderate-large damaging earthquakes stemming from increased seismicity rate causes broad societal concerns among industry, regulators, and the public. Thus, quantifying the time-dependent seismic hazard associated with the fluid injection is of great importance. To this end, I investigate the large-scale seismic, hydrogeologic, and injection data in northern Texas for period of 2007-2015 and in northern-central Oklahoma for period of 1995-2017. An effective induced earthquake forecasting model is developed, considering a complex relationship between injection operations and consequent seismicity. I find that the timing and magnitude of regional induced earthquakes are fully controlled by the process of fluid diffusion in a poroelastic medium and thus can be successfully forecasted. The obtained time-dependent seismic hazard model is spatiotemporally heterogeneous and decreasing injection rates does not immediately reduce the probability of an earthquake. The presented framework can be used for operational induced earthquake forecasting. Information about the associated fundamental processes, inducing conditions, and probabilistic seismic hazards has broad benefits to the society.
ContributorsZhai, Guang (Author) / Shirzaei, Manoochehr (Thesis advisor) / Garnero, Edward (Committee member) / Clarke, Amanda (Committee member) / Tyburczy, James (Committee member) / Li, Mingming (Committee member) / Arizona State University (Publisher)
Created2018
156961-Thumbnail Image.png
Description
The pace of exoplanet discoveries has rapidly accelerated in the past few decades and the number of planets with measured mass and radius is expected to pick up in the coming years. Many more planets with a size similar to earth are expected to be found. Currently, software for characterizing

The pace of exoplanet discoveries has rapidly accelerated in the past few decades and the number of planets with measured mass and radius is expected to pick up in the coming years. Many more planets with a size similar to earth are expected to be found. Currently, software for characterizing rocky planet interiors is lacking. There is no doubt that a planet’s interior plays a key role in determining surface conditions including atmosphere composition and land area. Comparing data with diagrams of mass vs. radius for terrestrial planets provides only a first-order estimate of the internal structure and composition of planets [e.g. Seager et al 2007]. This thesis will present a new Python library, ExoPlex, which has routines to create a forward model of rocky exoplanets between 0.1 and 5 Earth masses. The ExoPlex code offers users the ability to model planets of arbitrary composition of Fe-Si-Mg-Al-Ca-O in addition to a water layer. This is achieved by modeling rocky planets after the earth and other known terrestrial planets. The three distinct layers which make up the Earth's internal structure are: core, mantle, and water. Terrestrial planet cores will be dominated by iron however, like earth, there may be some quantity of light element inclusion which can serve to enhance expected core volumes. In ExoPlex, these light element inclusions are S-Si-O and are included as iron-alloys. Mantles will have a more diverse mineralogy than planet cores. Unlike most other rocky planet models, ExoPlex remains unbiased in its treatment of the mantle in terms of composition. Si-Mg-Al-Ca oxide components are combined by predicting the mantle mineralogy using a Gibbs free energy minimization software package called Perple\_X [Connolly 2009]. By allowing an arbitrary composition, ExoPlex can uniquely model planets using their host star’s composition as an indicator of planet composition. This is a proven technique [Dorn et al 2015] which has not yet been widely utilized, possibly due to the lack of availability of easy to use software. I present a model sensitivity analysis to indicate the most important parameters to constrain in future observing missions. ExoPlex is currently available on PyPI so it may be installed using pip or conda on Mac OS or Linux based operating systems. It requires a specific scripting environment which is explained in the documentation currently stored on the ExoPlex GitHub page.
ContributorsLorenzo, Alejandro M., Jr (Author) / Desch, Steven (Thesis advisor) / Shim, Dan S.-H. (Committee member) / Line, Michael (Committee member) / Li, Mingming (Committee member) / Arizona State University (Publisher)
Created2018
171746-Thumbnail Image.png
Description
Subsolidus convection in the mantle of Earth is the driving mechanism behind plate tectonics and provides a central framework linking geophysical, geochemical, petrological, hydrological, and biological processes within the system. Seismic observations have revealed mantle heterogeneities in wide-ranging scales from less than tens of to thousands of kilometers. Understanding the

Subsolidus convection in the mantle of Earth is the driving mechanism behind plate tectonics and provides a central framework linking geophysical, geochemical, petrological, hydrological, and biological processes within the system. Seismic observations have revealed mantle heterogeneities in wide-ranging scales from less than tens of to thousands of kilometers. Understanding the origins and dynamics of these anomalies is critical to advance our knowledge on how mantle convection operates and coevolves with the surface system. This dissertation attempts to constrain the past, present and future of mantle dynamics with lines of evidence from seismology, geodynamics, petrology, geochemistry, and astrophysics. Above Earth’s core, two continent-sized large low shear velocity provinces (LLSVPs) beneath Africa and the Pacific Ocean were seismically detected decades ago. Yet their origin, composition, detailed morphology and influence over mantle convection remain elusive. First, I propose the two LLSVPs may represent the mantle remnants of the Moon-forming impactor Theia. I show that the mantle of Theia is intrinsically denser than Earth’s mantle and would have sunk and accumulated into LLSVP-like structures in the deepest mantle after 4.5 billion years. Second, I examined the maximum height of the two LLSVPs and determined that the African LLSVP is ~1,000 km higher than the Pacific counterpart. Using geodynamic simulations, I find the height of a stable LLSVP is mainly controlled by its density and the ambient mantle viscosity. With ~1,000 numerical experiments, I conclude that the origin of the great height difference between the LLSVPs is that the African LLSVP is less dense, and thus less stable than the Pacific LLSVP. Next, I numerically identified another dynamic scenario accounting for the vastly different height of the two LLSVPs, which is caused by catastrophic sinking of accumulated subducted slabs at the 660-km boundary. Last, targeting one ancient carbonatite above the African LLSVP, I show that lithium isotopes in humite measured by nanoscale secondary ion mass spectrometry was able to uncover the signature of a subducted oceanic crust in its magma source, which may return from the interior to the surface by mantle plumes.
ContributorsYuan, Qian (Author) / Li, Mingming (Thesis advisor) / Garnero, Edward (Committee member) / Shim, Sang-Heon (Committee member) / Hervig, Richard (Committee member) / Bose, Maitrayee (Committee member) / Arizona State University (Publisher)
Created2022
157672-Thumbnail Image.png
Description
The transport of hydrogen to the Earth’s deep interior remains uncertain. The upper mantle minerals have very low hydrogen solubilities (hundreds of ppm). The hydrogen storage capability in the transition zone minerals (2 wt%) is high compared to those of the upper mantle. The hydrogen storage in

The transport of hydrogen to the Earth’s deep interior remains uncertain. The upper mantle minerals have very low hydrogen solubilities (hundreds of ppm). The hydrogen storage capability in the transition zone minerals (2 wt%) is high compared to those of the upper mantle. The hydrogen storage in the lower mantle is not well known. The main minerals in the lower mantle bridgmanite and ferropericlase have very low hydrogen storage capacities (less than 20 ppm). In order to further understand the hydrogen storage in the lower mantle, a series of experiments had been conducted to simulate the environment similar to the Earth’s mantle. The experiments with hydrous Mg2SiO4 ringwoodite (Rw) show that it converts to crystalline dense hydrous silica, stishovite (Stv) or CaCl2-type SiO2(mStv), containing ∼1 wt% H2O together with bridgmanite (Brd) and MgO at the pressure-temperature conditions expected for lower mantle depths between approximately 660 to 1600 km. Brd would break down partially to dense hydrous silica (6–25 mol%) and(Mg,Fe)O in mid-mantle regions with 0.05–0.27 wt% H2O. The hydrous stishovite has a CaCl2 structure, which is common among hydrous minerals in the lower mantle. Based on this observation, I hypothesize the existence of hydrous phases in the lower mantle. The experiments found a new hexagonal iron hydroxide (η-Fe12O18+x/2Hx) between the stability fields of the epsilon and pyrite-type FeOOH at 60–80 GPa and high temperature. The new phase contains less H2O, limiting the H2O transport from the shallow to the deep mantle in the Fe–O–H system. Possible hydrogen storage in Ca-perovskite was studied. CaPv could contain 0.5–1 wt% water and the water in CaPv could distort the crystal structure of CaPv from cubic to tetragonal structure. In conclusion, hydrogen can be stored in hydrous stishovite in the shallower depth of the lower mantle. At greater depth, the new η phase and pyrite-type phase would take over the hydrogen storage. The role of CaPv in deep water storage needs to be considered in future studies.
ContributorsChen, Huawei (Author) / Shim, Sang-Heon (Thesis advisor) / Garnero, Edward (Committee member) / Bose, Maitrayee (Committee member) / Li, Mingming (Committee member) / Leinenweber, Kurt (Committee member) / Arizona State University (Publisher)
Created2019
158014-Thumbnail Image.png
Description
The interior of Earth is stratified due to gravity. Therefore, the lateral heterogeneities observed as seismic anomalies by seismologists are extremely interesting: they hold the key to understand the composition, thermal status and evolution of the Earth. This work investigates seismic anomalies inside Earth’s lowermost mantle and focuses on patch-like

The interior of Earth is stratified due to gravity. Therefore, the lateral heterogeneities observed as seismic anomalies by seismologists are extremely interesting: they hold the key to understand the composition, thermal status and evolution of the Earth. This work investigates seismic anomalies inside Earth’s lowermost mantle and focuses on patch-like ultra-low velocity zones (ULVZs) found on Earth’s core-mantle boundary (CMB). Firstly, all previous ULVZ studies are compiled and ULVZ locations on the CMB are digitized. The result is a database, which is publicly available online. A key finding is that there is not a simple mapping between the locations of the observed ULVZs and the large low velocities provinces (LLVPs). Instead, ULVZs are more likely to occur near LLVP boundaries. This spatial correlation study supports a compositionally distinct origin for at least some ULVZs. Next, the seismic structure of the basal mantle beneath the Central America is investigated. This region hosts present and past subducted slabs, which could have brought compositionally distinct oceanic basalt all the way down to the CMB. The waveform distortions of a core-reflected seismic phase and a forward modeling method are used to constrain the causes of the CMB structures. In addition to ULVZ structures, isolated patches of thin zones with shear velocity increased by over 10% relative to background mantle are found for the first time. Ultra-high velocity zones (UHVZs) are interspersed with ULVZs and could be caused by subducted mid-ocean ridge basalt (MORB) that undergoes partial melting and melt segregation. Fe-rich partial melt of MORB can form ULVZs, and silica polymorphs (SiO2) and calcium-perovskite (CaPv) rich solid residue can explain the UHVZs. Finally, large-scale heterogeneities in the lowermost mantle are investigated using S waveform broadening observations. Several basal layer models are case-studied via synthetic calculations. S wave arrivals received at a distance larger than 80˚ in a global dataset from large earthquakes between the years 1994 and 2017 are examined and S waveform broadenings are documented. This approach exploits large distance data for the first time, and therefore is complementary to previous studies in terms of sampling locations. One possible explanation of S waveform broadening is velocity discontinuity inside the D″ layer due to the temperature controlled Bm-pPv phase transition.
ContributorsYu, Shule (Author) / Garnero, Edward J (Thesis advisor) / Li, Mingming (Committee member) / Shim, Sang-Heon (Committee member) / Tyburczy, James A. (Committee member) / Till, Christy B. (Committee member) / Arizona State University (Publisher)
Created2020
157625-Thumbnail Image.png
Description
This research investigates the fine scale structure in Earth's mantle, especially for the lowermost mantle, where strong heterogeneity exists. Recent seismic tomography models have resolved large-scale features in the lower mantle, such as the large low shear velocity provinces (LLSVPs). However, differences are present between different models, especially at shorter

This research investigates the fine scale structure in Earth's mantle, especially for the lowermost mantle, where strong heterogeneity exists. Recent seismic tomography models have resolved large-scale features in the lower mantle, such as the large low shear velocity provinces (LLSVPs). However, differences are present between different models, especially at shorter length scales. Fine scale structures both within and outside LLSVPs are still poorly constrained. The drastic growth of global seismic networks presents densely sampled seismic data in unprecedented quality and quantity. In this work, the Empirical Wavelet construction method has been developed to document seismic travel time and waveform information for a global shear wave seismic dataset. A dataset of 250K high-quality seismic records with comprehensive measurements is documented and made publicly available. To more accurately classify high quality seismic signal from the noise, 1.4 million manually labeled seismic records have been used to train a supervised classification model. The constructed model performed better than the empirical model deployed in the Empirical Wavelet method, with 87% in precision and 83% in recall. To utilize lower amplitude phases such as higher multiples of S and ScS waves, we have developed a geographic bin stacking method to improve signal-to-noise ratio. It is then applied to Sn waves up to n=6 and ScSn wave up to n=5 for both minor and major arc phases. The virtual stations constructed provide unique path sampling and coverage, vastly improving sampling in the Southern Hemisphere. With the high-quality dataset we have gathered, ray-based layer stripping iterative forward tomography is implemented to update a starting tomography model by mapping the travel time residuals along the ray from the surface down to the core mantle boundary. Final updated models with different starting tomography models show consistent updates, suggesting a convergent solution. The final updated models show higher resolution results than the starting tomography models, especially on intermediate-scale structures. The combined analyses and results in this work provide new tools and new datasets to image the fine-scale heterogeneous structures in the lower mantle, which advances our understanding of the dynamics and evolution of the Earth's mantle.
ContributorsLai, Hongyu (Author) / Garnero, Edward J (Thesis advisor) / Till, Christy B. (Committee member) / Shim, Sang-Heon (Committee member) / Li, Mingming (Committee member) / Tyburczy, James (Committee member) / Arizona State University (Publisher)
Created2019
158065-Thumbnail Image.png
Description
The mineralogy of the deep mantle is one of the key factors for the chemical evolution of the Earth. The constituent minerals of the mantle rock control the physical properties of the mantle, which have significant impacts on the large-scale processes occurring in the Earth's interior. In my PhD research,

The mineralogy of the deep mantle is one of the key factors for the chemical evolution of the Earth. The constituent minerals of the mantle rock control the physical properties of the mantle, which have significant impacts on the large-scale processes occurring in the Earth's interior. In my PhD research, I adopted experimental approaches to investigate the mineralogy and the physical properties of the Earth's materials in the deep mantle by using the diamond anvil cells (DACs) combined with in-situ X-ray diffraction techniques.

First, I found that Ca-bearing bridgmanite can be stable in the deeper part of the Earth's lower mantle where temperature is sufficiently high. The dissolution of calcium into bridgmanite can change the physical properties of the mantle, such as compressibility and viscosity. This study suggests a new mineralogical model for the lower mantle, which is composed of the two layers depending on whether calcium dissolves in bridgmanite or forms CaSiO3 perovskite as a separate phase.

Second, I investigated the mineralogy and density of the subducting materials in the Archean at the P-T conditions near 670 km-depth. The experiments suggest that the major phases of Archean volcanic crust is majoritic garnet and ringwoodite in the P-T conditions of the deep transition zone, which become bridgmanite with increasing pressure. The density model showed that Archean volcanic crust would have been denser than the surrounding mantle, promoting sinking into the lower mantle regardless of the style of the transportation in the Archean.

Lastly, I further investigated the mineralogies and densities of the ancient volcanic crusts for the Archean and Proterozoic at the P-T conditions of the lower mantle. The experiments suggest that the mineralogy of the ancient volcanic crusts is composed mostly of bridgmanite, which is systemically denser than the surrounding lower mantle. This implies that the ancient volcanic crusts would have accumulated at the base of the mantle because of their large density and thickness. Therefore, the distinctive chemistry of the ancient volcanic crusts from the surrounding mantle would have given a rise to the chemical heterogeneities in the region for billions of years.
ContributorsKo, Byeongkwan (Author) / Shim, Sang-Heon (Thesis advisor) / Garnero, Edward (Committee member) / Leinenweber, Kurt (Committee member) / Li, Mingming (Committee member) / Desch, Steven (Committee member) / Arizona State University (Publisher)
Created2020