Matching Items (4)
Filtering by

Clear all filters

152940-Thumbnail Image.png
Description
Following a traumatic brain injury (TBI) 5-50% of patients will develop post traumatic epilepsy (PTE). Pediatric patients are most susceptible with the highest incidence of PTE. Currently, we cannot prevent the development of PTE and knowledge of basic mechanisms are unknown. This has led to several shortcomings

Following a traumatic brain injury (TBI) 5-50% of patients will develop post traumatic epilepsy (PTE). Pediatric patients are most susceptible with the highest incidence of PTE. Currently, we cannot prevent the development of PTE and knowledge of basic mechanisms are unknown. This has led to several shortcomings to the treatment of PTE, one of which is the use of anticonvulsant medication to the population of TBI patients that are not likely to develop PTE. The complication of identifying the two populations has been hindered by the ability to find a marker to the pathogenesis of PTE. The central hypothesis of this dissertation is that following TBI, the cortex undergoes distinct cellular and synaptic reorganization that facilitates cortical excitability and promotes seizure development. Chapter 2 of this dissertation details excitatory and inhibitory changes in the rat cortex after severe TBI. This dissertation aims to identify cortical changes to a single cell level after severe TBI using whole cell patch clamp and electroencephalogram electrophysiology. The work of this dissertation concluded that excitatory and inhibitory synaptic activity in cortical controlled impact (CCI) animals showed the development of distinct burst discharges that were not present in control animals. The results suggest that CCI induces early "silent" seizures that are detectable on EEG and correlate with changes to the synaptic excitability in the cortex. The synaptic changes and development of burst discharges may play an important role in synchronizing the network and promoting the development of PTE.
ContributorsNichols, Joshua (Author) / Anderson, Trent (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2014
149837-Thumbnail Image.png
Description
The failure to withhold inappropriate behavior is a central component of most impulse control disorders, including Attention Deficit Hyperactivity Disorder (ADHD). The present study examined the effects of housing environment and methylphenidate (a drug often prescribed for ADHD) on the performance of rats in two response inhibition tasks: differential reinforcement

The failure to withhold inappropriate behavior is a central component of most impulse control disorders, including Attention Deficit Hyperactivity Disorder (ADHD). The present study examined the effects of housing environment and methylphenidate (a drug often prescribed for ADHD) on the performance of rats in two response inhibition tasks: differential reinforcement of low rate (DRL) and fixed minimum interval (FMI). Both tasks required rats to wait a fixed amount of time (6 s) before emitting a reinforced response. The capacity to withhold the target response (volitional inhibition) and timing precision were estimated on the basis of performance in each of the tasks. Paradoxically, rats housed in a mildly enriched environment that included a conspecific displayed less volitional inhibition in both tasks compared to rats housed in an isolated environment. Enriched housing, however, increased timing precision. Acute administration of methylphenidate partially reversed the effects of enriched housing. Implications of these results in the assessment and treatment of ADHD-related impulsivity are discussed.
ContributorsHill, Jade C (Author) / Sanabria, Federico (Thesis advisor) / Killeen, Peter (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2011
150809-Thumbnail Image.png
Description
Dopamine (DA) is a neurotransmitter involved in attention, goal oriented behavior, movement, reward learning, and short term and working memory. For the past four decades, mathematical and computational modeling approaches have been useful in DA research, and although every modeling approach has limitations, a model is an efficient way to

Dopamine (DA) is a neurotransmitter involved in attention, goal oriented behavior, movement, reward learning, and short term and working memory. For the past four decades, mathematical and computational modeling approaches have been useful in DA research, and although every modeling approach has limitations, a model is an efficient way to generate and explore hypotheses. This work develops a model of DA dynamics in a representative, single DA neuron by integrating previous experimental, theoretical and computational research. The model consists of three compartments: the cytosol, the vesicles, and the extracellular space and forms the basis of a new mathematical paradigm for examining the dynamics of DA synthesis, storage, release and reuptake. The model can be driven by action potentials generated by any model of excitable membrane potential or even from experimentally induced depolarization voltage recordings. Here the model is forced by a previously published model of the excitable membrane of a mesencephalic DA neuron in order to study the biochemical processes involved in extracellular DA production. After demonstrating that the model exhibits realistic dynamics resembling those observed experimentally, the model is used to examine the functional changes in presynaptic mechanisms due to application of cocaine. Sensitivity analysis and numerical studies that focus on various possible mechanisms for the inhibition of DAT by cocaine provide insight for the complex interactions involved in DA dynamics. In particular, comparing numerical results for a mixed inhibition mechanism to those for competitive, non-competitive and uncompetitive inhibition mechanisms reveals many behavioral similarities for these different types of inhibition that depend on inhibition parameters and levels of cocaine. Placing experimental results within this context of mixed inhibition provides a possible explanation for the conflicting views of uptake inhibition mechanisms found in experimental neuroscience literature.
ContributorsTello-Bravo, David (Author) / Crook, Sharon M (Thesis advisor) / Greenwood, Priscilla E (Thesis advisor) / Baer, Steven M. (Committee member) / Castaneda, Edward (Committee member) / Castillo-Chavez, Carlos (Committee member) / Arizona State University (Publisher)
Created2012
Description
Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. When TBI occurs in children it often results in severe cognitive and behavioral deficits. Post-injury, the pediatric brain may be sensitive to the effects of TBI while undergoing a number of age-dependent physiological

Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. When TBI occurs in children it often results in severe cognitive and behavioral deficits. Post-injury, the pediatric brain may be sensitive to the effects of TBI while undergoing a number of age-dependent physiological and neurobiological changes. Due to the nature of the developing cortex, it is important to understand how a pediatric brain recovers from a severe TBI (sTBI) compared to an adult. Investigating major cortical and cellular changes after sTBI in a pediatric model can elucidate why pediatrics go on to suffer more neurological damage than an adult after head trauma. To model pediatric sTBI, I use controlled cortical impact (CCI) in juvenile mice (P22). First, I show that by 14 days after injury, animals begin to show recurrent, non-injury induced, electrographic seizures. Also, using whole-cell patch clamp, layer V pyramidal neurons in the peri-injury area show no changes except single-cell excitatory and inhibitory synaptic bursts. These results demonstrate that CCI induces epileptiform activity and distinct synaptic bursting within 14 days of injury without altering the intrinsic properties of layer V pyramidal neurons. Second, I characterized changes to the cortical inhibitory network and how fast-spiking (FS) interneurons in the peri-injury region function after CCI. I found that there is no loss of interneurons in the injury zone, but a 70% loss of parvalbumin immunoreactivity (PV-IR). FS neurons received less inhibitory input and greater excitatory input. Finally, I show that the cortical interneuron network is also affected in the contralateral motor cortex. The contralateral motor cortex shows a loss of interneurons and loss of PV-IR. Contralateral FS neurons in the motor cortex synaptically showed greater excitatory input and less inhibitory input 14 days after injury. In summary, this work demonstrates that by 14 days after injury, the pediatric cortex develops epileptiform activity likely due to cortical inhibitory network dysfunction. These findings provide novel insight into how pediatric cortical networks function in the injured brain and suggest potential circuit level mechanisms that may contribute to neurological disorders as a result of TBI.
ContributorsNichols, Joshua (Author) / Anderson, Trent (Thesis advisor) / Newbern, Jason (Thesis advisor) / Neisewander, Janet (Committee member) / Qiu, Shenfeng (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2015