Matching Items (6)
Filtering by

Clear all filters

153109-Thumbnail Image.png
Description
This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the

This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the speed of propagation of the initial crack could differ from different test conditions and different solder materials. A quantitative analysis about the fatigue behavior of SAC lead-free solder under thermal preconditioning process is conducted. This thesis presents a method of making prediction of failure life of solder alloy by building a Weibull regression model. The failure life of solder on circuit board is assumed Weibull distributed. Different materials and test conditions could affect the distribution by changing the shape and scale parameters of Weibull distribution. The method is to model the regression of parameters with different test conditions as predictors based on Bayesian inference concepts. In the process of building regression models, prior distributions are generated according to the previous studies, and Markov Chain Monte Carlo (MCMC) is used under WinBUGS environment.
ContributorsXu, Xinyue (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
157184-Thumbnail Image.png
Description
The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is

The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is one way to avoid our current gigaton-scale emission of carbon dioxide into the atmosphere. However, for this to be possible, separation techniques are necessary to remove the nitrogen from air before combustion or from the flue gas after combustion. Metal-organic frameworks (MOFs) are a relatively new class of porous material that show great promise for adsorptive separation processes. Here, potential mechanisms of O2/N2 separation and CO2/N2 separation are explored.

First, a logical categorization of potential adsorptive separation mechanisms in MOFs is outlined by comparing existing data with previously studied materials. Size-selective adsorptive separation is investigated for both gas systems using molecular simulations. A correlation between size-selective equilibrium adsorptive separation capabilities and pore diameter is established in materials with complex pore distributions. A method of generating mobile extra-framework cations which drastically increase adsorptive selectivity toward nitrogen over oxygen via electrostatic interactions is explored through experiments and simulations. Finally, deposition of redox-active ferrocene molecules into systematically generated defects is shown to be an effective method of increasing selectivity towards oxygen.
ContributorsMcIntyre, Sean (Author) / Mu, Bin (Thesis advisor) / Green, Matthew (Committee member) / Lind, Marylaura (Committee member) / Arizona State University (Publisher)
Created2019
157001-Thumbnail Image.png
Description
Ethylene vinyl acetate (EVA) is the most commonly used encapsulant in photovoltaic modules. However, EVA degrades over time and causes performance losses in PV system. Therefore, EVA degradation is a matter of concern from a durability point of view.

This work compares EVA encapsulant degradation in glass/backsheet and glass/glass field-aged

Ethylene vinyl acetate (EVA) is the most commonly used encapsulant in photovoltaic modules. However, EVA degrades over time and causes performance losses in PV system. Therefore, EVA degradation is a matter of concern from a durability point of view.

This work compares EVA encapsulant degradation in glass/backsheet and glass/glass field-aged PV modules. EVA was extracted from three field-aged modules (two glass/backsheet and one glass/glass modules) from three different manufacturers from various regions (cell edges, cell centers, and non-cell region) from each module based on their visual and UV Fluorescence images. Characterization techniques such as I-V measurements, Colorimetry, Different Scanning Calorimetry, Thermogravimetric Analysis, Raman spectroscopy, and Fourier Transform Infrared Spectroscopy were performed on EVA samples.

The intensity of EVA discoloration was quantified using colorimetric measurements. Module performance parameters like Isc and Pmax degradation rates were calculated from I-V measurements. Properties such as degree of crystallinity, vinyl acetate content and degree of crosslinking were calculated from DSC, TGA, and Raman measurements, respectively. Polyenes responsible for EVA browning were identified in FTIR spectra.

The results from the characterization techniques confirmed that when EVA undergoes degradation, crosslinking in EVA increases beyond 90% causing a decrease in the degree of crystallinity and an increase in vinyl acetate content of EVA. Presence of polyenes in FTIR spectra of degraded EVA confirmed the occurrence of Norrish II reaction. However, photobleaching occurred in glass/backsheet modules due to the breathable backsheet whereas no photobleaching occurred in glass/glass modules because they were hermetically sealed. Hence, the yellowness index along with the Isc and Pmax degradation rates of EVA in glass/glass module is higher than that in glass/backsheet modules.

The results implied that more acetic acid was produced in the non-cell region due to its double layer of EVA compared to the front EVA from cell region. But, since glass/glass module is hermetically sealed, acetic acid gets entrapped inside the module further accelerating EVA degradation whereas it diffuses out through backsheet in glass/backsheet modules. Hence, it can be said that EVA might be a good encapsulant for glass/backsheet modules, but the same cannot be said for glass/glass modules.
ContributorsPatel, Aesha Parimalbhai (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Green, Matthew (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2018
155444-Thumbnail Image.png
Description
This is a two-part thesis assessing the long-term reliability of photovoltaic modules.

Part 1: Manufacturing dependent reliability - Adapting FMECA for quality control in PV module manufacturing

This part is aimed at introducing a statistical tool in quality assessments in PV module manufacturing. Developed jointly by ASU-PRL and Clean Energy Associates,

This is a two-part thesis assessing the long-term reliability of photovoltaic modules.

Part 1: Manufacturing dependent reliability - Adapting FMECA for quality control in PV module manufacturing

This part is aimed at introducing a statistical tool in quality assessments in PV module manufacturing. Developed jointly by ASU-PRL and Clean Energy Associates, this work adapts the Failure Mode Effect and Criticality Analysis (FMECA, IEC 60812) to quantify the impact of failure modes observed at the time of manufacturing. The method was developed through analysis of nearly 9000 modules at the pre-shipment evaluation stage in module manufacturing facilities across south east Asia. Numerous projects were analyzed to generate RPN (Risk Priority Number) scores for projects. In this manner, it was possibly to quantitatively assess the risk being carried the project at the time of shipment of modules. The objective of this work was to develop a benchmarking system that would allow for accurate quantitative estimations of risk mitigation and project bankability.

Part 2: Climate dependent reliability - Activation energy determination for climate specific degradation modes

This work attempts to model the parameter (Isc or Rs) degradation rate of modules as a function of the climatic parameters (i.e. temperature, relative humidity and ultraviolet radiation) at the site. The objective of this work was to look beyond the power degradation rate and model based on the performance parameter directly affected by the degradation mode under investigation (encapsulant browning or IMS degradation of solder bonds). Different physical models were tested and validated through comparing the activation energy obtained for each degradation mode. It was concluded that, for the degradation of the solder bonds within the module, the Pecks equation (function of temperature and relative humidity) modelled with Rs increase was the best fit; the activation energy ranging from 0.4 – 0.7 eV based on the climate type. For encapsulant browning, the Modified Arrhenius equation (function of temperature and UV) seemed to be the best fit presently, yielding an activation energy of 0.3 eV. The work was concluded by suggesting possible modifications to the models based on degradation pathways unaccounted for in the present work.
ContributorsPore, Shantanu (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Green, Matthew (Thesis advisor) / Srinivasan, Devrajan (Committee member) / Arizona State University (Publisher)
Created2017
155450-Thumbnail Image.png
Description
Distributed Renewable energy generators are now contributing a significant amount of energy into the energy grid. Consequently, reliability adequacy of such energy generators will depend on making accurate forecasts of energy produced by them. Power outputs of Solar PV systems depend on the stochastic variation of environmental factors (solar irradiance,

Distributed Renewable energy generators are now contributing a significant amount of energy into the energy grid. Consequently, reliability adequacy of such energy generators will depend on making accurate forecasts of energy produced by them. Power outputs of Solar PV systems depend on the stochastic variation of environmental factors (solar irradiance, ambient temperature & wind speed) and random mechanical failures/repairs. Monte Carlo Simulation which is typically used to model such problems becomes too computationally intensive leading to simplifying state-space assumptions. Multi-state models for power system reliability offer a higher flexibility in providing a description of system state evolution and an accurate representation of probability. In this study, Universal Generating Functions (UGF) were used to solve such combinatorial problems. 8 grid connected Solar PV systems were analyzed with a combined capacity of about 5MW located in a hot-dry climate (Arizona) and accuracy of 98% was achieved when validated with real-time data. An analytics framework is provided to grid operators and utilities to effectively forecast energy produced by distributed energy assets and in turn, develop strategies for effective Demand Response in times of increased share of renewable distributed energy assets in the grid. Second part of this thesis extends the environmental modelling approach to develop an aging test to be run in conjunction with an accelerated test of Solar PV modules. Accelerated Lifetime Testing procedures in the industry are used to determine the dominant failure modes which the product undergoes in the field, as well as predict the lifetime of the product. UV stressor is one of the ten stressors which a PV module undergoes in the field. UV exposure causes browning of modules leading to drop in Short Circuit Current. This thesis presents an environmental modelling approach for the hot-dry climate and extends it to develop an aging test methodology. This along with the accelerated tests would help achieve the goal of correlating field failures with accelerated tests and obtain acceleration factor. This knowledge would help predict PV module degradation in the field within 30% of the actual value and help in knowing the PV module lifetime accurately.
ContributorsKadloor, Nikhil (Author) / Kuitche, Joseph (Thesis advisor) / Pan, Rong (Thesis advisor) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2017
149658-Thumbnail Image.png
Description
Hydropower generation is one of the clean renewable energies which has received great attention in the power industry. Hydropower has been the leading source of renewable energy. It provides more than 86% of all electricity generated by renewable sources worldwide. Generally, the life span of a hydropower plant is considered

Hydropower generation is one of the clean renewable energies which has received great attention in the power industry. Hydropower has been the leading source of renewable energy. It provides more than 86% of all electricity generated by renewable sources worldwide. Generally, the life span of a hydropower plant is considered as 30 to 50 years. Power plants over 30 years old usually conduct a feasibility study of rehabilitation on their entire facilities including infrastructure. By age 35, the forced outage rate increases by 10 percentage points compared to the previous year. Much longer outages occur in power plants older than 20 years. Consequently, the forced outage rate increases exponentially due to these longer outages. Although these long forced outages are not frequent, their impact is immense. If reasonable timing of rehabilitation is missed, an abrupt long-term outage could occur and additional unnecessary repairs and inefficiencies would follow. On the contrary, too early replacement might cause the waste of revenue. The hydropower plants of Korea Water Resources Corporation (hereafter K-water) are utilized for this study. Twenty-four K-water generators comprise the population for quantifying the reliability of each equipment. A facility in a hydropower plant is a repairable system because most failures can be fixed without replacing the entire facility. The fault data of each power plant are collected, within which only forced outage faults are considered as raw data for reliability analyses. The mean cumulative repair functions (MCF) of each facility are determined with the failure data tables, using Nelson's graph method. The power law model, a popular model for a repairable system, can also be obtained to represent representative equipment and system availability. The criterion-based analysis of HydroAmp is used to provide more accurate reliability of each power plant. Two case studies are presented to enhance the understanding of the availability of each power plant and represent economic evaluations for modernization. Also, equipment in a hydropower plant is categorized into two groups based on their reliability for determining modernization timing and their suitable replacement periods are obtained using simulation.
ContributorsKwon, Ogeuk (Author) / Holbert, Keith E. (Thesis advisor) / Heydt, Gerald T (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2011