Matching Items (2)
Filtering by

Clear all filters

Description

Social isolation in early childhood can have life-long effects on social behaviors and development. Cerebellar crus I has additionally been linked to social behaviors through forebrain pathways. In this study, we hypothesized that social isolation of mice from postnatal day 21 (P21) until p35 would result in impaired social behaviors.

Social isolation in early childhood can have life-long effects on social behaviors and development. Cerebellar crus I has additionally been linked to social behaviors through forebrain pathways. In this study, we hypothesized that social isolation of mice from postnatal day 21 (P21) until p35 would result in impaired social behaviors. Additionally, we hypothesized that gq DREADD injections into crus I, to increase levels of cerebellar stimulation, at the start of the isolation period would counteract the effects of isolation, leading to mice who displayed normal social behaviors. Social behavior at P35 was tested using the 3-Chamber Task, a well-established model, and SLEAP deep-learning software was used to obtain quantifiable data. We found no difference in social behaviors between socially raised and isolated mice. However, gq DREADD mice displayed greater levels of social interaction and exploration than either socially raised mice or isolated mice. This research carries implications for possible therapeutic interventions for groups prone to social isolation, such as those with developmental disabilities, minority groups, the elderly, and prison populations.

ContributorsIttner, Marina (Author) / Verpeut, Jessica (Thesis director) / Doane, Leah (Committee member) / Conrad, Cheryl (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Psychology (Contributor) / School of Criminology and Criminal Justice (Contributor)
Created2023-05
156075-Thumbnail Image.png
Description
Food is an essential driver of animal behavior. For social organisms, the acquisition of food guides interactions with the environment and with group-mates. Studies have focused on how social individuals find and choose food sources, and share both food and information with group-mates. However, it is often not clear how

Food is an essential driver of animal behavior. For social organisms, the acquisition of food guides interactions with the environment and with group-mates. Studies have focused on how social individuals find and choose food sources, and share both food and information with group-mates. However, it is often not clear how experiences throughout an individual's life influence such interactions. The core question of this thesis is how individuals’ experience contributes to within-caste behavioral variation in a social group. I investigate the effects of individual history, including physical injury and food-related experience, on individuals' social food sharing behavior, responses to food-related stimuli, and the associated neural biogenic amine signaling pathways. I use the eusocial honey bee (Apis mellifera) system, one in which individuals exhibit a high degree of plasticity in responses to environmental stimuli and there is a richness of communicatory pathways for food-related information. Foraging exposes honey bees to aversive experiences such as predation, con-specific competition, and environmental toxins. I show that foraging experience changes individuals' response thresholds to sucrose, a main component of adults’ diets, depending on whether foraging conditions are benign or aversive. Bodily injury is demonstrated to reduce individuals' appetitive responses to new, potentially food-predictive odors. Aversive conditions also impact an individual's social food sharing behavior; mouth-to-mouse trophallaxis with particular groupmates is modulated by aversive foraging conditions both for foragers who directly experienced these conditions and non-foragers who were influenced via social contact with foragers. Although the mechanisms underlying these behavioral changes have yet to be resolved, my results implicate biogenic amine signaling pathways as a potential component. Serotonin and octopamine concentrations are shown to undergo long-term change due to distinct foraging experiences. My work serves to highlight the malleability of a social individual's food-related behavior, suggesting that environmental conditions shape how individuals respond to food and share information with group-mates. This thesis contributes to a deeper understanding of inter-individual variation in animal behavior.
ContributorsFinkelstein, Abigail (Author) / Amdam, Gro V (Thesis advisor) / Conrad, Cheryl (Committee member) / Smith, Brian (Committee member) / Neisewander, Janet (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2017