Matching Items (4)

Filtering by

Clear all filters

135275-Thumbnail Image.png

Design of Pneumatically Actuated Torsional Loading for High Strain Rate Testing

Description

In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain

In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain rates but currently little can be done to produce a synchronized combination of these varying impacts. This research focuses on fabricating a flange which will be mounted on the incident bar of a SHPB and struck perpendicularly by a pneumatically driven striker thus allowing for torsion without interfering with the simultaneous compression or tension. Analytical calculations are done to determine size specifications of the flange to protect against yielding or failure. Based on these results and other design considerations, the flange and a complementary incident bar are created. Timing can then be established such that the waves impact the specimen at the same time causing simultaneous loading of a specimen. This thesis allows research at Arizona State University to individually incorporate all uniaxial deformation modes (tension, compression, and torsion) at high strain rates as well as combining either of the first two modes with torsion. Introduction of torsion will expand the testing capabilities of the SHPB at ASU and allow for more in depth analysis of the mechanical behavior of materials under impact loading. Combining torsion with tension or compression will promote analysis of a material's adherence to the Von Mises failure criterion. This greater understanding of material behavior can be implemented into models and simulations thereby improving the accuracy with which engineers can design new structures.

Contributors

Agent

Created

Date Created
2016-05

161700-Thumbnail Image.png

Synthesis and Mechanical Behavior of NiTi Films with Controlled Microstructures

Description

Thin films are widely used for a variety of applications such as electrical interconnects, sensors, as well as optical, mechanical, and decorative coatings. Thin films made of NiTi, commonly referred to as nitinol, have generated recent interest as they are

Thin films are widely used for a variety of applications such as electrical interconnects, sensors, as well as optical, mechanical, and decorative coatings. Thin films made of NiTi, commonly referred to as nitinol, have generated recent interest as they are highly suitable for high frequency thermal actuation in microelectromechanical devices because of their small thermal mass and large surface-to-volume ratio. The functional properties of NiTi arise from a diffusionless phase transformation between two of its primary phases: austenite and martensite. This transformation leads to either the shape memory or pseudoelastic effect, where inelastic deformation is recovered with and without the application of heat, respectively. It is well known that the mechanical properties of NiTi are highly dependent on the microstructure, but few studies have been performed to examine the mechanical behavior of thin NiTi films (thickness below 200 nm), which are expected to have grain sizes in a similar range. The primary intent of this work is the synthesis of NiTi thin films with controlled microstructures, followed by characterization of their microstructure and its relationship to the mechanical properties. Microstructural control was achieved by utilizing a novel synthesis technique in which amorphous precursor films are seeded with nanocrystals, which serve as nucleation sites during subsequent crystallization via thermal annealing. This technique enables control of grain size, dispersion, and phase composition of thin films by varying the parameters of seed deposition as well as annealing conditions. The microstructures and composition of the NiTi thin films were characterized using X-ray Diffraction, Electron Microprobe Analysis, High-resolution Transmission Electron Microscopy, Secondary Ion Mass Spectroscopy, Differential Scanning Calorimetry, as well as other complementary techniques. Mechanical properties of the films were investigated using uniaxial tensile testing performed using a custom microfabricated tensile testing stage. The NiTi thin films exhibit mechanical behavior that is distinct from bulk NiTi, which is also highly sensitive to small changes in microstructure and phase composition. These findings are rationalized in terms of the changes in deformation mechanisms that occur at small grain sizes and sample dimensions.

Contributors

Agent

Created

Date Created
2021

155793-Thumbnail Image.png

Investigating the Mechanical Behavior and Deformation Mechanisms of Ultrafine-grained Metal Films Using Ex-situ and In-situ TEM Techniques

Description

Nanocrystalline (NC) and Ultrafine-grained (UFG) metal films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. These properties, such as very high strength, primarily arise from the change in the underlying deformation mechanisms. Experimental and simulation

Nanocrystalline (NC) and Ultrafine-grained (UFG) metal films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. These properties, such as very high strength, primarily arise from the change in the underlying deformation mechanisms. Experimental and simulation studies have shown that because of the small grain size, conventional dislocation plasticity is curtailed in these materials and grain boundary mediated mechanisms become more important. Although the deformation behavior and the underlying mechanisms in these materials have been investigated in depth, relatively little attention has been focused on the inhomogeneous nature of their microstructure (particularly originating from the texture of the film) and its influence on their macroscopic response. Furthermore, the rate dependency of mechanical response in NC/UFG metal films with different textures has not been systematically investigated. The objectives of this dissertation are two-fold.

The first objective is to carry out a systematic investigation of the mechanical behavior of NC/UFG thin films with different textures under different loading rates. This includes a novel approach to study the effect of texture-induced plastic anisotropy on mechanical behavior of the films. Efforts are made to correlate the behavior of UFG metal films and the underlying deformation mechanisms. The second objective is to understand the deformation mechanisms of UFG aluminum films using in-situ transmission electron microscopy (TEM) experiments with Automated Crystal Orientation Mapping. This technique enables us to investigate grain rotations in UFG Al films and to monitor the microstructural changes in these films during deformation, thereby revealing detailed information about the deformation mechanisms prevalent in UFG metal films.

Contributors

Agent

Created

Date Created
2017

157722-Thumbnail Image.png

Mechanical Behavior of Cu-Co Multilayers

Description

With the advancements in technology, it is now possible to synthesize new materials with specific microstructures, and enhanced mechanical and physical properties. One of the new class of materials are nanoscale metallic multilayers, often referred to as nanolaminates. Nanolaminates are

With the advancements in technology, it is now possible to synthesize new materials with specific microstructures, and enhanced mechanical and physical properties. One of the new class of materials are nanoscale metallic multilayers, often referred to as nanolaminates. Nanolaminates are composed of alternating, nanometer-thick layers of multiple materials (typically metals or ceramics), and exhibit very high strength, wear resistance and radiation tolerance. This thesis is focused on the fabrication and mechanical characterization of nanolaminates composed of Copper and Cobalt, two metals which are nearly immiscible across the entire composition range. The synthesis of these Cu-Co nanolaminates is performed using sputtering, a well-known and technologically relevant physical vapor deposition process. X-ray diffraction is used to characterize the microstructure of the nanolaminates. Cu-Co nanolaminates with different layer thicknesses are tested using microelectromechanical systems (MEMS) based tensile testing devices fabricated using photolithography and etching processes. The stress-strain behavior of nanolaminates with varying layer thicknesses are analysed and correlated to their microstructure.

Contributors

Agent

Created

Date Created
2019