Matching Items (8)
Filtering by

Clear all filters

152010-Thumbnail Image.png
Description
Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary

Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary with process and requires calibration to make them reliable. This increases test cost and testing time. This challenge can be overcome by combining electrical stimulus based testing along with statistical analysis on MEMS response for electrical stimulus and also limited physical stimulus response data. This thesis proposes electrical stimulus based built in self test(BIST) which can be used to get MEMS data and later this data can be used for statistical analysis. A capacitive MEMS accelerometer is considered to test this BIST approach. This BIST circuit overhead is less and utilizes most of the standard readout circuit. This thesis discusses accelerometer response for electrical stimulus and BIST architecture. As a part of this BIST circuit, a second order sigma delta modulator has been designed. This modulator has a sampling frequency of 1MHz and bandwidth of 6KHz. SNDR of 60dB is achieved with 1Vpp differential input signal and 3.3V supply
ContributorsKundur, Vinay (Author) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152409-Thumbnail Image.png
Description
The applications which use MEMS accelerometer have been on rise and many new fields which are using the MEMS devices have been on rise. The industry is trying to reduce the cost of production of these MEMS devices. These devices are manufactured using micromachining and the interface circuitry is manufactured

The applications which use MEMS accelerometer have been on rise and many new fields which are using the MEMS devices have been on rise. The industry is trying to reduce the cost of production of these MEMS devices. These devices are manufactured using micromachining and the interface circuitry is manufactured using CMOS and the final product is integrated on to a single chip. Amount spent on testing of the MEMS devices make up a considerable share of the total final cost of the device. In order to save the cost and time spent on testing, researchers have been trying to develop different methodologies. At present, MEMS devices are tested using mechanical stimuli to measure the device parameters and for calibration the device. This testing is necessary since the MEMS process is not a very well controlled process unlike CMOS. This is done using an ATE and the cost of using ATE (automatic testing equipment) contribute to 30-40% of the devices final cost. This thesis proposes an architecture which can use an Electrical Signal to stimulate the MEMS device and use the data from the MEMS response in approximating the calibration coefficients efficiently. As a proof of concept, we have designed a BIST (Built-in self-test) circuit for MEMS accelerometer. The BIST has an electrical stimulus generator, Capacitance-to-voltage converter, ∑ ∆ ADC. This thesis explains in detail the design of the Electrical stimulus generator. We have also designed a technique to correlate the parameters obtained from electrical stimuli to those obtained by mechanical stimuli. This method is cost effective since the additional circuitry needed to implement BIST is less since the technique utilizes most of the existing standard readout circuitry already present.
ContributorsJangala Naga, Naveen Sai (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2014
151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
151246-Thumbnail Image.png
Description
Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly

Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly attractive for portable applications. The Digital class D amplifier is an interesting solution to increase the efficiency of embedded systems. However, this solution is not good enough in terms of PWM stage linearity and power supply rejection. An efficient control is needed to correct the error sources in order to get a high fidelity sound quality in the whole audio range of frequencies. A fundamental analysis on various error sources due to non idealities in the power stage have been discussed here with key focus on Power supply perturbations driving the Power stage of a Class D Audio Amplifier. Two types of closed loop Digital Class D architecture for PSRR improvement have been proposed and modeled. Double sided uniform sampling modulation has been used. One of the architecture uses feedback around the power stage and the second architecture uses feedback into digital domain. Simulation & experimental results confirm that the closed loop PSRR & PS-IMD improve by around 30-40 dB and 25 dB respectively.
ContributorsChakraborty, Bijeta (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
Description
ABSTRACT

Designers creating the next generation remote sensing enabled smart devices need to overcome the challenges of prevailing ventures including time to market and expense.

To reduce the time and effort involved in initial prototyping, a good reference design is often desired and warranted. This paper provides the necessary reference materials

ABSTRACT

Designers creating the next generation remote sensing enabled smart devices need to overcome the challenges of prevailing ventures including time to market and expense.

To reduce the time and effort involved in initial prototyping, a good reference design is often desired and warranted. This paper provides the necessary reference materials for Designers to implement a wireless solution efficiently and effectively.

This document is intended for users with limited Bluetooth technology experience.

Many sensing-enabled devices require a ‘hard-wire’ or cable link to a host monitoring system. This can limit the potential for product advancements by anchoring the system to a single location preventing portability and the convenience of a remote system. By removing the “wired” or cabled portion from a design, a broader scope of devices becomes feasible.

One common problematic area for these types of sensors is within the internal medicine field. Proximity sensing is far more practical and less invasive to implement than surgical implantation. Bluetooth Low Energy (BLE) systems solve the hard wired problem by decoupling the physical sensor from the host system through a BLE transceiver that can send information to an external monitoring system. This wireless link enables new sensor technology to be leveraged into previously unobtainable markets; such as, internal medicine, wearable devices, and Infotainment to name a few. Wireless technology for sensor systems are a potentially disruptive technology changing the way environmental monitoring is implemented and considered.

With this BLE design reference, products can be created with new capabilities to advance current technologies for military, commercial, industrial and medical sectors in rapid succession.
ContributorsHughes, Clinton Francis (Author) / Blain Christen, Jennifer (Thesis advisor) / Ozev, Sule (Committee member) / Ogras, Umit Y. (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2015
171476-Thumbnail Image.png
Description
Portable health diagnostic systems seek to perform medical grade diagnostics in non-ideal environments. This work details a robust fault tolerant portable health diagnostic design implemented in hardware, firmware and software for the detectionof HPV in low-income countries. The device under device under test (DUT) is a fluorescence based lateral flow

Portable health diagnostic systems seek to perform medical grade diagnostics in non-ideal environments. This work details a robust fault tolerant portable health diagnostic design implemented in hardware, firmware and software for the detectionof HPV in low-income countries. The device under device under test (DUT) is a fluorescence based lateral flow assay (LFA) point-of-care (POC) device. This work’s contributions are: firmware and software development, calibration routine implementation, device performance characterization and a proposed method of in-software fault detection. Firmware was refactored from the original implementation of the POC fluorescence reader to expose an application programming interface (API) via USB. Companion software available for desktop environments (Windows, Mac and Linux) was created to interface with this firmware API and conduct macro level routines to request and receive fluorescence data while presenting a user-friendly interface to clinical technicians. Lastly, an environmental chamber was constructed to conduct sequential diagnostic reads in order to observe sensor drift and other deviations that might present themselves in real-world usage. The results from these evaluations show a standard deviation of less than 1% in fluorescence readings in nominal temperature environments (approx. 25C) suggesting that this system will have a favorable signal-to-noise (SNR) ratio in such a setting. In non-ideal over heated environments (≥38C), the evaluation results showed performance degradation with standard deviations as large as 15%.
ContributorsLue Sang, Christopher David (Author) / Blain Christen, Jennifer M (Thesis advisor) / Ozev, Sule (Committee member) / Goryll, Michael (Committee member) / Raupp, Gregory (Committee member) / Arizona State University (Publisher)
Created2022
161729-Thumbnail Image.png
Description
Point-of-Care diagnostics is one of the most popular fields of research in bio-medicine today because of its portability, speed of response, convenience and quality assurance. One of the most important steps in such a device is to prepare and purify the sample by extracting the nucleic acids, for which small

Point-of-Care diagnostics is one of the most popular fields of research in bio-medicine today because of its portability, speed of response, convenience and quality assurance. One of the most important steps in such a device is to prepare and purify the sample by extracting the nucleic acids, for which small spherical magnetic particles called magnetic beads are often used in laboratories. Even though magnetic beads have the ability to isolate DNA or RNA from bio-samples in their purified form, integrating these into a microfluidic point-of-need testing kit is still a bit of a challenge. In this thesis, the possibility of integrating paramagnetic beads instead of silica-coated dynabeads, has been evaluated with respect to a point-of-need SARS-CoV-2 virus testing kit. This project is a comparative study between five different sizes of carboxyl-coated paramagnetic beads with reference to silica-coated dynabeads, and how each of them behave in a microcapillary chip in presence of magnetic fields of different strengths. The diameters and velocities of the beads have been calculated using different types of microscopic imaging techniques. The washing and elution steps of an extraction process have been recreated using syringe pump, microcapillary channels and permanent magnets, based on which those parameters of the beads have been studied which are essential for extraction behaviour. The yield efficiency of the beads have also been analysed by using these to extract Salmon DNA. Overall, furthering this research will improve the sensitivity and specificity for any low-cost nucleic-acid based point-of-care testing device.
ContributorsBiswas, Shilpita (Author) / Christen, Jennifer B (Thesis advisor) / Ozev, Sule (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2021
151228-Thumbnail Image.png
Description
Micro-Electro Mechanical System (MEMS) is the micro-scale technology applying on various fields. Traditional testing strategy of MEMS requires physical stimulus, which leads to high cost specified equipment. Also there are a large number of wafer-level measurements for MEMS. A method of estimation calibration coefficient only by electrical stimulus based wafer

Micro-Electro Mechanical System (MEMS) is the micro-scale technology applying on various fields. Traditional testing strategy of MEMS requires physical stimulus, which leads to high cost specified equipment. Also there are a large number of wafer-level measurements for MEMS. A method of estimation calibration coefficient only by electrical stimulus based wafer level measurements is included in the thesis. Moreover, a statistical technique is introduced that can reduce the number of wafer level measurements, meanwhile obtaining an accurate estimate of unmeasured parameters. To improve estimation accuracy, outlier analysis is the effective technique and merged in the test flow. Besides, an algorithm for optimizing test set is included, also providing numerical estimated prediction error.
ContributorsDeng, Lingfei (Author) / Ozev, Sule (Thesis advisor) / Yu, Hongyu (Committee member) / Christen, Jennifer Blain (Committee member) / Arizona State University (Publisher)
Created2012