Matching Items (11)
Filtering by

Clear all filters

152040-Thumbnail Image.png
Description
"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small

"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small size devices are mainly concentrated around Micro-electro-mechanical-system (MEMS) technology. MEMS accelerometers are widely published and used in consumer electronics, such as smart phones, gaming consoles, anti-shake camera and vibration detectors. This study represents liquid-state low frequency micro-accelerometer based on molecular electronic transducer (MET), in which inertial mass is not the only but also the conversion of mechanical movement to electric current signal is the main utilization of the ionic liquid. With silicon-based planar micro-fabrication, the device uses a sub-micron liter electrolyte droplet sealed in oil as the sensing body and a MET electrode arrangement which is the anode-cathode-cathode-anode (ACCA) in parallel as the read-out sensing part. In order to sensing the movement of ionic liquid, an imposed electric potential was applied between the anode and the cathode. The electrode reaction, I_3^-+2e^___3I^-, occurs around the cathode which is reverse at the anodes. Obviously, the current magnitude varies with the concentration of ionic liquid, which will be effected by the movement of liquid droplet as the inertial mass. With such structure, the promising performance of the MET device design is to achieve 10.8 V/G (G=9.81 m/s^2) sensitivity at 20 Hz with the bandwidth from 1 Hz to 50 Hz, and a low noise floor of 100 ug/sqrt(Hz) at 20 Hz.
ContributorsLiang, Mengbing (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Kozicki, Micheal (Committee member) / Arizona State University (Publisher)
Created2013
152492-Thumbnail Image.png
Description
This thesis presents approaches to develop micro seismometers and accelerometers based on molecular electronic transducers (MET) technology using MicroElectroMechanical Systems (MEMS) techniques. MET is a technology applied in seismic instrumentation that proves highly beneficial to planetary seismology. It consists of an electrochemical cell that senses the movement of liquid electrolyte

This thesis presents approaches to develop micro seismometers and accelerometers based on molecular electronic transducers (MET) technology using MicroElectroMechanical Systems (MEMS) techniques. MET is a technology applied in seismic instrumentation that proves highly beneficial to planetary seismology. It consists of an electrochemical cell that senses the movement of liquid electrolyte between electrodes by converting it to the output current. MET seismometers have advantages of high sensitivity, low noise floor, small size, absence of fragile mechanical moving parts and independence on the direction of sensitivity axis. By using MEMS techniques, a micro MET seismometer is developed with inter-electrode spacing close to 1μm, which improves the sensitivity of fabricated device to above 3000 V/(m/s^2) under operating bias of 600 mV and input acceleration of 400 μG (G=9.81m/s^2) at 0.32 Hz. The lowered hydrodynamic resistance by increasing the number of channels improves the self-noise to -127 dB equivalent to 44 nG/√Hz at 1 Hz. An alternative approach to build the sensing element of MEMS MET seismometer using SOI process is also presented in this thesis. The significantly increased number of channels is expected to improve the noise performance. Inspired by the advantages of combining MET and MEMS technologies on the development of seismometer, a low frequency accelerometer utilizing MET technology with post-CMOS-compatible fabrication processes is developed. In the fabricated accelerometer, the complicated fabrication of mass-spring system in solid-state MEMS accelerometer is replaced with a much simpler post-CMOS-compatible process containing only deposition of a four-electrode MET structure on a planar substrate, and a liquid inertia mass of an electrolyte droplet encapsulated by oil film. The fabrication process does not involve focused ion beam milling which is used in the micro MET seismometer fabrication, thus the cost is lowered. Furthermore, the planar structure and the novel idea of using an oil film as the sealing diaphragm eliminate the complicated three-dimensional packaging of the seismometer. The fabricated device achieves 10.8 V/G sensitivity at 20 Hz with nearly flat response over the frequency range from 1 Hz to 50 Hz, and a low noise floor of 75 μG/√Hz at 20 Hz.
ContributorsHuang, Hai (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Dai, Lenore (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2014
153028-Thumbnail Image.png
Description
This dissertation presents my work on development of deformable electronics using microelectromechanical systems (MEMS) based fabrication technologies. In recent years, deformable electronics are coming to revolutionize the functionality of microelectronics seamlessly with their application environment, ranging from various consumer electronics to bio-medical applications. Many researchers have studied this area, and

This dissertation presents my work on development of deformable electronics using microelectromechanical systems (MEMS) based fabrication technologies. In recent years, deformable electronics are coming to revolutionize the functionality of microelectronics seamlessly with their application environment, ranging from various consumer electronics to bio-medical applications. Many researchers have studied this area, and a wide variety of devices have been fabricated. One traditional way is to directly fabricate electronic devices on flexible substrate through low-temperature processes. These devices suffered from constrained functionality due to the temperature limit. Another transfer printing approach has been developed recently. The general idea is to fabricate functional devices on hard and planar substrates using standard processes then transferred by elastomeric stamps and printed on desired flexible and stretchable substrates. The main disadvantages are that the transfer printing step may limit the yield. The third method is "flexible skins" which silicon substrates are thinned down and structured into islands and sandwiched by two layers of polymer. The main advantage of this method is post CMOS compatible. Based on this technology, we successfully fabricated a 3-D flexible thermal sensor for intravascular flow monitoring. The final product of the 3-D sensor has three independent sensing elements equally distributed around the wall of catheter (1.2 mm in diameter) with 120° spacing. This structure introduces three independent information channels, and cross-comparisons among all readings were utilized to eliminate experimental error and provide better measurement results. The novel fabrication and assembly technology can also be applied to other catheter based biomedical devices. A step forward inspired by the ancient art of folding, origami, which creating three-dimensional (3-D) structures from two-dimensional (2-D) sheets through a high degree of folding along the creases. Based on this idea, we developed a novel method to enable better deformability. One example is origami-enabled silicon solar cells. The solar panel can reach up to 644% areal compactness while maintain reasonable good performance (less than 30% output power density drop) upon 40 times cyclic folding/unfolding. This approach can be readily applied to other functional devices, ranging from sensors, displays, antenna, to energy storage devices.
ContributorsTang, Rui (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Pan, George (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2014
156608-Thumbnail Image.png
Description
There has been a surge in two-dimensional (2D) materials field since the discovery of graphene in 2004. Recently, a new class of layered atomically thin materials that exhibit in-plane structural anisotropy, such as black phosphorous, transition metal trichalcogenides and rhenium dichalcogenides (ReS2), have attracted great attention. The reduced symmetry in

There has been a surge in two-dimensional (2D) materials field since the discovery of graphene in 2004. Recently, a new class of layered atomically thin materials that exhibit in-plane structural anisotropy, such as black phosphorous, transition metal trichalcogenides and rhenium dichalcogenides (ReS2), have attracted great attention. The reduced symmetry in these novel 2D materials gives rise to highly anisotropic physical properties that enable unique applications in next-gen electronics and optoelectronics. For example, higher carrier mobility along one preferential crystal direction for anisotropic field effect transistors and anisotropic photon absorption for polarization-sensitive photodetectors.

This dissertation endeavors to address two key challenges towards practical application of anisotropic materials. One is the scalable production of high quality 2D anisotropic thin films, and the other is the controllability over anisotropy present in synthesized crystals. The investigation is focused primarily on rhenium disulfide because of its chemical similarity to conventional 2D transition metal dichalcogenides and yet anisotropic nature. Carefully designed vapor phase deposition has been demonstrated effective for batch synthesis of high quality ReS2 monolayer. Heteroepitaxial growth proves to be a feasible route for controlling anisotropic directions. Scanning/transmission electron microscopy and angle-resolved Raman spectroscopy have been extensively applied to reveal the structure-property relationship in synthesized 2D anisotropic layers and their heterostructures.
ContributorsChen, Bin, 1968- (Author) / Tongay, Sefaattin (Thesis advisor) / Bertoni, Mariana (Committee member) / Chang, Lan-Yun (Committee member) / Arizona State University (Publisher)
Created2018
156666-Thumbnail Image.png
Description
Layer structured two dimensional (2D) semiconductors have gained much interest due to their intriguing optical and electronic properties induced by the unique van der Waals bonding between layers. The extraordinary success for graphene and transition metal dichalcogenides (TMDCs) has triggered a constant search for novel 2D semiconductors beyond them. Gallium

Layer structured two dimensional (2D) semiconductors have gained much interest due to their intriguing optical and electronic properties induced by the unique van der Waals bonding between layers. The extraordinary success for graphene and transition metal dichalcogenides (TMDCs) has triggered a constant search for novel 2D semiconductors beyond them. Gallium chalcogenides, belonging to the group III-VI compounds, are a new class of 2D semiconductors that carry a variety of interesting properties including wide spectrum coverage of their bandgaps and thus are promising candidates for next generation electronic and optoelectronic devices. Pushing these materials toward applications requires more controllable synthesis methods and facile routes for engineering their properties on demand.

In this dissertation, vapor phase transport is used to synthesize layer structured gallium chalcogenide nanomaterials with highly controlled structure, morphology and properties, with particular emphasis on GaSe, GaTe and GaSeTe alloys. Multiple routes are used to manipulate the physical properties of these materials including strain engineering, defect engineering and phase engineering. First, 2D GaSe with controlled morphologies is synthesized on Si(111) substrates and the bandgap is significantly reduced from 2 eV to 1.7 eV due to lateral tensile strain. By applying vertical compressive strain using a diamond anvil cell, the band gap can be further reduced to 1.4 eV. Next, pseudo-1D GaTe nanomaterials with a monoclinic structure are synthesized on various substrates. The product exhibits highly anisotropic atomic structure and properties characterized by high-resolution transmission electron microscopy and angle resolved Raman and photoluminescence (PL) spectroscopy. Multiple sharp PL emissions below the bandgap are found due to defects localized at the edges and grain boundaries. Finally, layer structured GaSe1-xTex alloys across the full composition range are synthesized on GaAs(111) substrates. Results show that GaAs(111) substrate plays an essential role in stabilizing the metastable single-phase alloys within the miscibility gaps. A hexagonal to monoclinic phase crossover is observed as the Te content increases. The phase crossover features coexistence of both phases and isotropic to anisotropic structural transition.

Overall, this work provides insights into the controlled synthesis of gallium chalcogenides and opens up new opportunities towards optoelectronic applications that require tunable material properties.
ContributorsCai, Hui, Ph.D (Author) / Tongay, Sefaattin (Thesis advisor) / Dwyer, Christian (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2018
134831-Thumbnail Image.png
Description
Graphene is a very strong two-dimensional material with a lot of potential applications in microelectromechanical systems (MEMS). In this research, graphene is being optimized for use in a 5 m x 5 m graphene resonator. To work properly, this graphene resonator must have a uniform strain across all manufactured devices.

Graphene is a very strong two-dimensional material with a lot of potential applications in microelectromechanical systems (MEMS). In this research, graphene is being optimized for use in a 5 m x 5 m graphene resonator. To work properly, this graphene resonator must have a uniform strain across all manufactured devices. To reduce strain induced in graphene sheets grown for use in these resonators, evaporated platinum has been used in this investigation due to its relatively lower surface roughness compared to copper films. The final goal is to have the layer of ultrathin platinum (<=200 nm) deposited on the MEMS graphene resonator and used to grow graphene directly onto the devices to remove the manual transfer step due to its inscalability. After growth, graphene is coated with polymer and the platinum is then etched. This investigation concentrated on the transfer process of graphene onto Si/SiO2 substrate from the platinum films. It was determined that the ideal platinum etchant was aqua regia at a volumetric ratio of 6:3:1 (H2O:HCl:HNO3). This concentration was dilute enough to preserve the polymer and graphene layer, but strong enough to etch within a day. Type and thickness of polymer support layers were also investigated. PMMA at a thickness of 200 nm was ideal because it was easy to remove with acetone and strong enough to support the graphene during the etch process. A reference growth recipe was used in this investigation, but now that the transfer has been demonstrated, growth can be optimized for even thinner films.
ContributorsCayll, David Richard (Author) / Tongay, Sefaattin (Thesis director) / Lee, Hyunglae (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155105-Thumbnail Image.png
Description
The instrumentational measurement of seismic motion is important for a wide range of research fields and applications, such as seismology, geology, physics, civil engineering and harsh environment exploration. This report presents series approaches to develop Micro-Electro-Mechanical System (MEMS) enhanced inertial motion sensors including accelerometers, seismometers and inclinometers based on Molecular

The instrumentational measurement of seismic motion is important for a wide range of research fields and applications, such as seismology, geology, physics, civil engineering and harsh environment exploration. This report presents series approaches to develop Micro-Electro-Mechanical System (MEMS) enhanced inertial motion sensors including accelerometers, seismometers and inclinometers based on Molecular Electronic Transducers (MET) techniques.

Seismometers based on MET technology are attractive for planetary applications due to their high sensitivity, low noise floor, small size, absence of fragile mechanical moving parts and independence on the direction of sensitivity axis. By using MEMS techniques, a micro MET seismometer is developed with inter-electrode spacing close to 5 μm. The employment of MEMS improves the sensitivity of fabricated device to above 2500 V/(m/s2) under operating bias of 300 mV and input velocity of 8.4μm/s from 0.08Hz to 80Hz. The lowered hydrodynamic resistance by increasing the number of channels improves the self-noise to -135 dB equivalent to 18nG/√Hz (G=9.8m/s2) around 1.2 Hz.

Inspired by the advantages of combining MET and MEMS technologies on the development of seismometer, a feasibility study of development of a low frequency accelerometer utilizing MET technology with post-CMOS-compatible fabrication processes is performed. In the fabricated accelerometer, the complicated fabrication of mass-spring system in solid-state MEMS accelerometer is replaced with a much simpler post-CMOS-compatible process containing only deposition of a four-electrode MET structure on a planar substrate, and a liquid inertia mass of an electrolyte droplet. With a specific design of 3D printing based package and replace water based iodide solution by room temperature ionic liquid based electrolyte, the sensitivity relative to the ground motion can reach 103.69V/g, with the resolution of 5.25μG/√Hz at 1Hz.

By combining MET techniques and Zn-Cu electrochemical cell (Galvanic cell), this letter demonstrates a passive motion sensor powered by self-electrochemistry energy, named “Battery Accelerometer”. The experimental results indicated the peak sensitivity of battery accelerometer at its resonant frequency 18Hz is 10.4V/G with the resolution of 1.71μG without power consumption.
ContributorsLiang, Mengbing (Author) / Yu, Hongyu (Thesis advisor) / Dai, Lenore (Committee member) / Kozicki, Michael (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2016
155430-Thumbnail Image.png
Description
A new class of layered materials called the transition metal trichalcogenides (TMTCs) exhibit strong anisotropic properties due to their quasi-1D nature. These 2D materials are composed of chain-like structures which are weakly bound to form planar sheets with highly directional properties. The vibrational properties of three materials from the TMTC

A new class of layered materials called the transition metal trichalcogenides (TMTCs) exhibit strong anisotropic properties due to their quasi-1D nature. These 2D materials are composed of chain-like structures which are weakly bound to form planar sheets with highly directional properties. The vibrational properties of three materials from the TMTC family, specifically TiS3, ZrS3, and HfS3, are relatively unknown and studies performed in this work elucidates the origin of their Raman characteristics. The crystals were synthesized through chemical vapor transport prior to mechanical exfoliation onto Si/SiO¬2 substrates. XRD, AFM, and Raman spectroscopy were used to determine the crystallinity, thickness, and chemical signature of the exfoliated crystals. Vibrational modes and anisotropic polarization are investigated through density functional theory calculations and angle-resolved Raman spectroscopy. Particular Raman modes are explored in order to correlate select peaks to the b-axis crystalline direction. Mode III vibrations for TiS3, ZrS3, and HfS3 are shared between each material and serves as a unique identifier of the crystalline orientation in MX3 materials. Similar angle-resolved Raman studies were conducted on the novel Nb0.5Ti0.5S3 alloy material grown through chemical vapor transport. Results show that the anisotropy direction is more difficult to determine due to the randomization of quasi-1D chains caused by defects that are common in 2D alloys. This work provides a fundamental understanding of the vibrational properties of various TMTC materials which is needed to realize applications in direction dependent polarization and linear dichroism.
ContributorsKong, Wilson (Author) / Tongay, Sefaattin (Thesis advisor) / Wang, Liping (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2017
157927-Thumbnail Image.png
Description
Two-dimensional quantum materials have garnered increasing interest in a wide

variety of applications due to their promising optical and electronic properties. These

quantum materials are highly anticipated to make transformative quantum sensors and

biosensors. Biosensors are currently considered among one of the most promising

solutions to a wide variety of biomedical and environmental problems

Two-dimensional quantum materials have garnered increasing interest in a wide

variety of applications due to their promising optical and electronic properties. These

quantum materials are highly anticipated to make transformative quantum sensors and

biosensors. Biosensors are currently considered among one of the most promising

solutions to a wide variety of biomedical and environmental problems including highly

sensitive and selective detection of difficult pathogens, toxins, and biomolecules.

However, scientists face enormous challenges in achieving these goals with current

technologies. Quantum biosensors can have detection with extraordinary sensitivity and

selectivity through manipulation of their quantum states, offering extraordinary properties

that cannot be attained with traditional materials. These quantum materials are anticipated

to make significant impact in the detection, diagnosis, and treatment of many diseases.

Despite the exciting promise of these cutting-edge technologies, it is largely

unknown what the inherent toxicity and biocompatibility of two-dimensional (2D)

materials are. Studies are greatly needed to lay the foundation for understanding the

interactions between quantum materials and biosystems. This work introduces a new

method to continuously monitor the cell proliferation and toxicity behavior of 2D

materials. The cell viability and toxicity measurements coupled with Live/Dead

fluorescence imaging suggest the biocompatibility of crystalline MoS2 and MoSSe

monolayers and the significantly-reduced cellular growth of defected MoTe2 thin films

and exfoliated MoS2 nanosheets. Results show the exciting potential of incorporating

kinetic cell viability data of 2D materials with other assay tools to further fundamental

understanding of 2D material biocompatibility.
ContributorsTran, Michael, Ph.D (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Thesis advisor) / Muhich, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
158656-Thumbnail Image.png
Description
Transition metal di- and tri-halides (TMH) have recently gathered research attention owing to their intrinsic magnetism all the way down to their two-dimensional limit. 2D magnets, despite being a crucial component for realizing van der Waals heterostructures and devices with various functionalities, were not experimentally proven until very recently in

Transition metal di- and tri-halides (TMH) have recently gathered research attention owing to their intrinsic magnetism all the way down to their two-dimensional limit. 2D magnets, despite being a crucial component for realizing van der Waals heterostructures and devices with various functionalities, were not experimentally proven until very recently in 2017. The findings opened up enormous possibilities for studying new quantum states of matter that can enable potential to design spintronic, magnetic memory, data storage, sensing, and topological devices. However, practical applications in modern technologies demand materials with various physical and chemical properties such as electronic, optical, structural, catalytic, magnetic etc., which cannot be found within single material systems. Considering that compositional modifications in 2D systems lead to significant changes in properties due to the high anisotropy inherent to their crystallographic structure, this work focuses on alloying of TMH compounds to explore the potentials for tuning their properties. In this thesis, the ternary cation alloys of Co(1-x)Ni(x)Cl(2) and Mo(1-x)Cr(x)Cl(3) were synthesized via chemical vapor transport at a various stoichiometry. Their compositional, structural, and magnetic properties were studied using Energy Dispersive Spectroscopy, Raman Spectroscopy, X-Ray Diffraction, and Vibrating Sample Magnetometry. It was found that completely miscible ternary alloys of Co(1-x)Ni(x)Cl(2) show an increasing Néel temperature with nickel concentration. The Mo(1-x)Cr(x)Cl(3) alloy shows potential magnetic phase changes induced by the incorporation of molybdenum species within the host CrCl3 lattice. Magnetic measurements give insight into potential antiferromagnetic to ferromagnetic transition with molybdenum incorporation, accompanied by a shift in the magnetic easy-axis from parallel to perpendicular. Phase separation was found in the Fe(1-x)Cr(x)Cl(3) ternary alloy indicating that crystallographic structure compatibility plays an essential role in determining the miscibility of two parent compounds. Alloying across two similar (TMH) compounds appears to yield predictable results in properties as in the case of Co(1-x)Ni(x)Cl(2), while more exotic transitions, as in the case of Mo(1-x)Cr(x)Cl(3), can emerge by alloying dissimilar compounds. When dissimilarity reaches a certain limit, as with Fe(1-x)Cr(x)Cl(3), phase separation becomes more favorable. Future studies focusing on magnetic and structural phase transitions will reveal more insight into the effect of alloying in these TMH systems.
ContributorsKolari, Pranvera (Author) / Tongay, Sefaattin (Thesis advisor) / Jiao, Yang (Committee member) / Muhich, Christopher (Committee member) / Arizona State University (Publisher)
Created2020