Matching Items (2)
Filtering by

Clear all filters

134817-Thumbnail Image.png
Description
For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective

For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective and reliable through their usage of motors, springs, cables, elastics, pneumatics and reaction loads. These mechanisms apply internal forces and reaction loads to the body. On the other hand, external forces are those caused by an external agent outside the system such as air, water, or magnets. A design for an exoskeleton using external forces has seldom been attempted by researchers. This thesis project focuses on the development of a Limb Gait Simulator based on a Pure External Force and has proven its effectiveness in generating torque on the human leg. The external force is generated through air propulsion using an Electric Ducted Fan (EDF) motor. Such a motor is typically used for remote control airplanes, but their applications can go beyond this. The objective of this research is to generate torque on the human leg through the control of the EDF engines thrust and the opening/closing of the reverse thruster flaps. This device qualifies as "assist as needed"; the user is entirely in control of how much assistance he or she may want. Static thrust values for the EDF engine are recorded using a thrust test stand. The product of the thrust (N) and the distance on the thigh (m) is the resulting torque. With the motor running at maximum RPM, the highest torque value reached was that of 3.93 (Nm). The motor EDF motor is powered by a 6S 5000 mAh LiPo battery. This torque value could be increased with the usage of a second battery connected in series, but this comes at a price. The designed limb gait simulator demonstrates that external forces, such as air, could have potential in the development of future rehabilitation devices.
ContributorsToulouse, Tanguy Nathan (Author) / Sugar, Thomas (Thesis director) / Artemiadis, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155806-Thumbnail Image.png
Description
In order for assistive mobile robots to operate in the same environment as humans, they must be able to navigate the same obstacles as humans do. Many elements are required to do this: a powerful controller which can understand the obstacle, and power-dense actuators which will be able to achieve

In order for assistive mobile robots to operate in the same environment as humans, they must be able to navigate the same obstacles as humans do. Many elements are required to do this: a powerful controller which can understand the obstacle, and power-dense actuators which will be able to achieve the necessary limb accelerations and output energies. Rapid growth in information technology has made complex controllers, and the devices which run them considerably light and cheap. The energy density of batteries, motors, and engines has not grown nearly as fast. This is problematic because biological systems are more agile, and more efficient than robotic systems. This dissertation introduces design methods which may be used optimize a multiactuator robotic limb's natural dynamics in an effort to reduce energy waste. These energy savings decrease the robot's cost of transport, and the weight of the required fuel storage system. To achieve this, an optimal design method, which allows the specialization of robot geometry, is introduced. In addition to optimal geometry design, a gearing optimization is presented which selects a gear ratio which minimizes the electrical power at the motor while considering the constraints of the motor. Furthermore, an efficient algorithm for the optimization of parallel stiffness elements in the robot is introduced. In addition to the optimal design tools introduced, the KiTy SP robotic limb structure is also presented. Which is a novel hybrid parallel-serial actuation method. This novel leg structure has many desirable attributes such as: three dimensional end-effector positioning, low mobile mass, compact form-factor, and a large workspace. We also show that the KiTy SP structure outperforms the classical, biologically-inspired serial limb structure.
ContributorsCahill, Nathan M (Author) / Sugar, Thomas (Thesis advisor) / Ren, Yi (Thesis advisor) / Holgate, Matthew (Committee member) / Berman, Spring (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2017