Matching Items (2)
Filtering by

Clear all filters

137447-Thumbnail Image.png
Description
In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed

In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed to determine if these techniques correlated with the human data.
ContributorsJones, Hanna Vanessa (Author) / Liss, Julie (Thesis director) / Dorman, Michael (Committee member) / Borrie, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / Department of English (Contributor) / Speech and Hearing Science (Contributor)
Created2013-05
Description

This report describes the findings of an experiment designed to explore the nature of human hearing using binaural sound. The experiment also set out to determine a way to accurately find positional data from sound. Binaural recordings were made of high frequency sounds at various angles and the data was

This report describes the findings of an experiment designed to explore the nature of human hearing using binaural sound. The experiment also set out to determine a way to accurately find positional data from sound. Binaural recordings were made of high frequency sounds at various angles and the data was postprocessed to find the group delay and difference of intensity between the two channels. To do this, two methods were used. The first relied on manually analyzing the data by visually looking for the points of interest. The second method used a MATLAB program to scan the data for the points of interest by using a Fourier analysis. It was determined that while the first method has the potential to provide better results it is impractical and not representative of how human hearing works. The second method was far more efficient and demonstrated the reliance of human hearing on the difference of intensities. It was determined that through the use of the second method accurate positional data could be obtained by comparing the differences with experimental data.

ContributorsCruz, Benjamin (Author) / Takahashi, Timothy (Thesis director) / Aukes, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05