Matching Items (2)
Filtering by

Clear all filters

153277-Thumbnail Image.png
Description
This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated

This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids auditory parsing and functional representation of acoustic objects and was found to be a principal feature of pleasing auditory stimuli.
ContributorsPatten, Kristopher Jakob (Author) / Mcbeath, Michael K (Thesis advisor) / Baxter, Leslie C (Committee member) / Amazeen, Eric L (Committee member) / Dorman, Michael F. (Committee member) / Arizona State University (Publisher)
Created2014
155014-Thumbnail Image.png
Description
Perceived heaviness of lifted objects has been shown to scale to a ratio of muscle activity and movement during elbow lifts. This scaling reflects the importance of the forces applied to an object and the resulting kinematics for this perception. The current study determined whether these perceived heaviness

Perceived heaviness of lifted objects has been shown to scale to a ratio of muscle activity and movement during elbow lifts. This scaling reflects the importance of the forces applied to an object and the resulting kinematics for this perception. The current study determined whether these perceived heaviness dynamics are similar in other lifting conditions. Anatomically sourced context-conditioned variability has implications for motor control. The current study investigated whether these implications also hold for heaviness perception. In two experiments participants lifted objects with knee extension lifts and with several arm lifts and reported perceived heaviness. The resulting psychophysiological functions revealed the hypothesized muscle activity and movement ratio in both leg and arms lifts. Further, principal component regressions showed that the forearm flexors and corresponding joint angular accelerations were most relevant for perceived heaviness during arm lifts. Perceived heaviness dynamics are similar in the arms and legs.
ContributorsWaddell, Morgan (Author) / Amazeen, Eric L (Thesis advisor) / Amazeen, Polemnia G (Committee member) / Brewer, Gene A. (Committee member) / Arizona State University (Publisher)
Created2016