Matching Items (5)
Filtering by

Clear all filters

134715-Thumbnail Image.png
Description
Sexually transmitted diseases like gonorrhea and chlamydia, standardly treated with antibiotics, produce over 1.2 million cases annually in the emergency department (Jenkins et al., 2013). To determine a need for antibiotics, hospital labs utilize bacterial cultures to isolate and identify possible pathogens. Unfortunately, this technique can take up to 72

Sexually transmitted diseases like gonorrhea and chlamydia, standardly treated with antibiotics, produce over 1.2 million cases annually in the emergency department (Jenkins et al., 2013). To determine a need for antibiotics, hospital labs utilize bacterial cultures to isolate and identify possible pathogens. Unfortunately, this technique can take up to 72 hours, leading to several physicians presumptively treating patients based solely on history and physical presentation. With vague standards for diagnosis and a high percentage of asymptomatic carriers, several patients undergo two scenarios; over- or under-treatment. These two scenarios can lead to consequences like unnecessary exposure to antibiotics and development of secondary conditions (for example: pelvic inflammatory disease, infertility, etc.). This presents a need for a laboratory technique that can provide reliable results in an efficient matter. The viability of DNA-based chip targeted for C. trachomatis, N. gonorrhoeae, and other pathogens of interest were evaluated. The DNA-based chip presented several advantages as it can be easily integrated as a routine test given the process is already well-known, is customizable and able to target multiple pathogens within a single test and has the potential to return results within a few hours as opposed to days. As such, implementation of a DNA-based chip as a diagnostic tool is a timely and potentially impactful investigation.
ContributorsCharoenmins, Patherica (Author) / Penton, Christopher (Thesis director) / Moore, Marianne (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
189216-Thumbnail Image.png
Description
Limited funding hinders endangered species recovery. Thus, decision makers need to strategically allocate resources to save the most species. Decision science provides guidance on efficient prioritization of conservation actions. However, endangered species recovery cost estimates are incomplete, so decision makers need to understand the implications of different cost estimation approaches.

Limited funding hinders endangered species recovery. Thus, decision makers need to strategically allocate resources to save the most species. Decision science provides guidance on efficient prioritization of conservation actions. However, endangered species recovery cost estimates are incomplete, so decision makers need to understand the implications of different cost estimation approaches. To test how different ways of estimating the expected costs of recovery action influence suggested recovery priorities, I used three different cost estimation scenarios for prioritizing recovery effort for 29 endangered species in Arizona. My scenarios explored “remaining” costs, calculated by subtracting historical spending from recovery plan cost estimates, “average” costs which substituted the average cost for actions in recovery plans, and “micro” and “macro” overlaps accounting for efficiency of costs due to implementing shared recovery actions for species with overlapping ranges. These different methods of estimating costs resulted in different numbers of recovery plans funded. At a representative budget, the macro overlap scenario recommended funding for 97% of plans as compared to 93% of plans under the baseline cost scenario. In contrast, the micro overlap (59%), the average (28%), and remaining (24%) cost estimation approaches all resulted in less plans recommended for funding than the baseline. There were also differences in how individual plans were ranked across the scenarios and variation in species chosen for funding. The order of recovery plans was similar between the baseline and the remaining scenario (WS = 0.833), and the baseline and the average scenario (WS=0.811). The similarity metric is based on the identity of species ranked equally. In contrast, there was less similarity in plan ranking between the baseline, the macro (WS=0.777), and micro (WS=0.442) overlap scenarios. A group of 4 plans remained within the top priority ranks, 5 plans were ranked as high priority for all scenarios except the remaining cost scenario, and 5 plans were consistently ranked as low priority. My results show how cost estimation approaches influence species priority rankings and can be used to help decision makers determine implications when they are exploring options for prioritization.
ContributorsSansonetti, Alice Maria (Author) / Gerber, Leah (Thesis advisor) / Iacona, Gwen (Thesis advisor) / Maas, Amy (Committee member) / Arizona State University (Publisher)
Created2023
161847-Thumbnail Image.png
Description
Precision agriculture (PA) integrating information technology arouses broad interests and has been extensively studied to increase crop production and quality. Sensor probe technology, as one of the PA technologies, provides people with accurate real-time data, which has become an essential part of precision agriculture. Herein a novel microbial sensor probe

Precision agriculture (PA) integrating information technology arouses broad interests and has been extensively studied to increase crop production and quality. Sensor probe technology, as one of the PA technologies, provides people with accurate real-time data, which has become an essential part of precision agriculture. Herein a novel microbial sensor probe (MiProbE) is applied to monitor and study the growth of tomatoes (Solanum lycopersicum L.) in real-time at germination and seedling stages. The result showed the raw Miprobe signals present day/night cycles. Alginate-coated probes effectively avoided signal response failure and were more sensitive to the treatments than uncoated probes. The probe signals from successfully germinated tomato seeds and non-germinated seeds were different, and the signal curve of the probe was closely related to the growth conditions of tomato seedlings. Specifically, the rising period of the probe signals coincided with the normal growth period of tomato seedlings. All probes exhibited sudden increases in signal strength after nutrient treatments; however, subsequent probe signals behaved differently: algae extract-treated probe signals maintained a high strength after the treatments; chemical fertilizer-treated probe signals decreased earlier after the treatments; chemical fertilizers and algae extract-treated probe signals also maintained a higher strength after the treatments. Moreover, the relationship between ash-free dry weight and the signal curve indicated that the signal strength positively correlates with the dry weight, although other biological activities can affect the probe signal at the same time. Further study is still needed to investigate the relationship between plant biomass and Miprobe signal.
ContributorsQi, Deyang (Author) / Weiss, Taylor (Thesis advisor) / Penton, Christopher (Committee member) / Park, Yujin (Committee member) / Arizona State University (Publisher)
Created2021
161327-Thumbnail Image.png
Description
Marine ecosystems are currently being impacted by various threats; however, quantification of the impacts of known threats and the population status of species are often conducted at different scales, depending upon stakeholder needs. Global-scale species assessments can mask the impact of local or regional threats within the context of global

Marine ecosystems are currently being impacted by various threats; however, quantification of the impacts of known threats and the population status of species are often conducted at different scales, depending upon stakeholder needs. Global-scale species assessments can mask the impact of local or regional threats within the context of global conservation priorities even as conservation policies are generally implemented at the local or regional scale. This work aims to identify the regional threats currently impacting species present within the Gulf of Mexico as well as the current polices addressing those threats. Species currently impacted by threats were used to build an ecosystem model to estimate food web dynamics in the Gulf of Mexico. This model is the first of its kind to incorporate data from more than 1500 species occurring in the Gulf including all marine bony shorefishes, marine reptiles, complete clades of select marine invertebrates, marine birds, marine mammals, and chondrichthyans. Comprehensive analyses of these groups are important for an improved understanding of the functioning of the Gulf of Mexico food web and the impact of identified threats on food web dynamics. The identification of current threats and food web dynamics will help to inform conservation policy moving forward. Properly framed conservation efforts are more likely to be widely accepted and successful when there is an improved understanding on how policies can impact stakeholders both economically and through changing practices. Finally, an investigation of the legal frameworks currently recognized in the Gulf of Mexico was done to build an example tri-national framework between the United States, Mexico, and Cuba focusing on current conservation gaps allowing for specific regional conservation concerns to be addressed.
ContributorsStrongin, Kyle (Author) / Polidoro, Beth (Thesis advisor) / Saul, Steven (Committee member) / Gerber, Leah (Committee member) / Arizona State University (Publisher)
Created2021
161904-Thumbnail Image.png
Description
Stressors to marine environments are predicted to increase and affect the well-being of marine ecosystems and coastal communities. Marine protected areas (MPAs) are one most widely implemented interventions for marine stressors. Despite the implementation of thousands of protected areas worldwide, people are still striving to understand their dynamics as they

Stressors to marine environments are predicted to increase and affect the well-being of marine ecosystems and coastal communities. Marine protected areas (MPAs) are one most widely implemented interventions for marine stressors. Despite the implementation of thousands of protected areas worldwide, people are still striving to understand their dynamics as they vary in their efficacy and many MPAs have not met their objectives. Additionally, those that have often fail to protect the ecosystem services and cultural values necessary for human community health. Thus, research has expanded to include analyses of the human and social dimensions that may limit their effectiveness. This dissertation explores the role of community engagement in marine protected areas and perceptions of environmental changes in coastal communities. Currently, existing research on the roles of community engagement in marine conservation interventions is limited, particularly in the island-states of the Caribbean region. This dissertation contains a review of the literature to understand the nuances of community engagement in relation to MPAs. Through the review, it was determined that primary forms of engagement are interviews and surveys, and respondents primarily included businesses, community members, fishers, and resource users. To better understand the perceptions and practices on-the-ground, key informants were interviewed across the Caribbean. There are strong desires to conduct community engagement for innumerable benefits, but there are barriers that some participants have overcome. Sharing information between MPA sites offers an opportunity to effectively engage community members. For the local case study, Charlotteville, Trinidad and Tobago, a small, coastal fishing town in the northeast region of Tobago was selected to understand the role of perceptions of environmental changes. There were strong ties of environmental and social changes, with an emphasis on the impacts of environmental stressors to human health. The heterogeneity and diversity of responses in this chapter highlight the need to consider who is engaged in community engagement activities.
ContributorsBernard, Miranda Lynn (Author) / Gerber, Leah (Thesis advisor) / Buzinde, Christine (Committee member) / Schoon, Michael (Committee member) / Kittinger, Jack (Committee member) / Cheng, Samantha (Committee member) / Arizona State University (Publisher)
Created2021