Matching Items (2)
Filtering by

Clear all filters

153348-Thumbnail Image.png
Description
This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but

This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but remains computationally intractable for large systems. The models used in industry instead schedule for the forecast and withhold generation reserve for scenario response, but they are blind to how this reserve may be constrained by network congestion. This dissertation investigates more effective heuristics to improve economics and reliability in power systems where congestion is a concern.

Two general approaches are developed. Both approximate the effects of recourse decisions without actually solving a stochastic model. The first approach procures more reserve whenever approximate recourse policies stress the transmission network. The second approach procures reserve at prime locations by generalizing the existing practice of reserve disqualification. The latter approach is applied for feasibility and is later extended to limit scenario costs. Testing demonstrates expected cost improvements around 0.5%-1.0% for the IEEE 73-bus test case, which can translate to millions of dollars per year even for modest systems. The heuristics developed in this dissertation perform somewhere between established deterministic and stochastic models: providing an economic benefit over current practices without substantially increasing computational times.
ContributorsLyon, Joshua Daniel (Author) / Zhang, Muhong (Thesis advisor) / Hedman, Kory W (Thesis advisor) / Askin, Ronald G. (Committee member) / Mirchandani, Pitu (Committee member) / Arizona State University (Publisher)
Created2015
158093-Thumbnail Image.png
Description
Model-based clustering is a sub-field of statistical modeling and machine learning. The mixture models use the probability to describe the degree of the data point belonging to the cluster, and the probability is updated iteratively during the clustering. While mixture models have demonstrated the superior performance in handling noisy data

Model-based clustering is a sub-field of statistical modeling and machine learning. The mixture models use the probability to describe the degree of the data point belonging to the cluster, and the probability is updated iteratively during the clustering. While mixture models have demonstrated the superior performance in handling noisy data in many fields, there exist some challenges for high dimensional dataset. It is noted that among a large number of features, some may not indeed contribute to delineate the cluster profiles. The inclusion of these “noisy” features will confuse the model to identify the real structure of the clusters and cost more computational time. Recognizing the issue, in this dissertation, I propose a new feature selection algorithm for continuous dataset first and then extend to mixed datatype. Finally, I conduct uncertainty quantification for the feature selection results as the third topic.

The first topic is an embedded feature selection algorithm termed Expectation-Selection-Maximization (ESM) model that can automatically select features while optimizing the parameters for Gaussian Mixture Model. I introduce a relevancy index (RI) revealing the contribution of the feature in the clustering process to assist feature selection. I demonstrate the efficacy of the ESM by studying two synthetic datasets, four benchmark datasets, and an Alzheimer’s Disease dataset.

The second topic focuses on extending the application of ESM algorithm to handle mixed datatypes. The Gaussian mixture model is generalized to Generalized Model of Mixture (GMoM), which can not only handle continuous features, but also binary and nominal features.

The last topic is about Uncertainty Quantification (UQ) of the feature selection. A new algorithm termed ESOM is proposed, which takes the variance information into consideration while conducting feature selection. Also, a set of outliers are generated in the feature selection process to infer the uncertainty in the input data. Finally, the selected features and detected outlier instances are evaluated by visualization comparison.
ContributorsFu, Yinlin (Author) / Wu, Teresa (Thesis advisor) / Mirchandani, Pitu (Committee member) / Li, Jing (Committee member) / Pedrielli, Giulia (Committee member) / Arizona State University (Publisher)
Created2020