Matching Items (2)
Filtering by

Clear all filters

137507-Thumbnail Image.png
Description
Using weather data from the Weather Research and Forecasting model (WRF), we analyze the transport of inertial particles in Hurricane Katrina in order to identify coherent patterns of motion. For our analysis, we choose a Lagrangian approach instead of an Eulerian approach because the Lagrangian approach is objective and frame-independent,

Using weather data from the Weather Research and Forecasting model (WRF), we analyze the transport of inertial particles in Hurricane Katrina in order to identify coherent patterns of motion. For our analysis, we choose a Lagrangian approach instead of an Eulerian approach because the Lagrangian approach is objective and frame-independent, and gives results which are better defined. In particular, we locate Lagrangian Coherent Structures (LCS), which are smooth sets of fluid particles which are locally most hyperbolic (either attracting or repelling). We implement a variational method for locating LCS and compare the results to previous computation of LCS using Finite-Time Lyapunov Exponents (FTLE) to identify regions of high stretching in the fluid flow.
ContributorsDeibel, Angelica Rae (Author) / Tang, Wenbo (Thesis director) / Moustaoui, Mohamed (Committee member) / Kostelich, Eric (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2013-05
Description
Cancer modeling has brought a lot of attention in recent years. It had been proven to be a difficult task to model the behavior of cancer cells, since little about the "rules" a cell follows has been known. Existing models for cancer cells can be generalized into two categories: macroscopic

Cancer modeling has brought a lot of attention in recent years. It had been proven to be a difficult task to model the behavior of cancer cells, since little about the "rules" a cell follows has been known. Existing models for cancer cells can be generalized into two categories: macroscopic models which studies the tumor structure as a whole, and microscopic models which focus on the behavior of individual cells. Both modeling strategies strive the same goal of creating a model that can be validated with experimental data, and is reliable for predicting tumor growth. In order to achieve this goal, models must be developed based on certain rules that tumor structures follow. This paper will introduce how such rules can be implemented in a mathematical model, with the example of individual based modeling.
ContributorsHan, Zimo (Author) / Motsch, Sebastien (Thesis director) / Moustaoui, Mohamed (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12