Matching Items (11)
156832-Thumbnail Image.png
Description
Drylands (arid and semi-arid grassland ecosystems) cover about 40% of the Earth's surface and support over 40% of the human population, most of which is in emerging economies. Human development of drylands leads to topsoil loss, and over the last 160 years, woody plants have encroached on drylands, both of

Drylands (arid and semi-arid grassland ecosystems) cover about 40% of the Earth's surface and support over 40% of the human population, most of which is in emerging economies. Human development of drylands leads to topsoil loss, and over the last 160 years, woody plants have encroached on drylands, both of which have implications for maintaining soil viability. Understanding the spatial variability in erosion and soil organic carbon and total nitrogen under varying geomorphic and biotic forcing in drylands is therefore of paramount importance. This study focuses on how two plants, palo verde (Parkinsonia microphylla, nitrogen-fixing) and jojoba (Simmondsia chinensis, non-nitrogen fixing), affect sediment transport and soil organic carbon and total nitrogen pools in a dryland environment north of Phoenix, Arizona. Bulk samples were systematically collected from the top 10 cm of soil in twelve catenae to control for the existence and type of plants, location to canopy (sub- or intercanopy, up- or downslope), aspect, and distance from the divide. Samples were measured for soil organic carbon and total nitrogen and an unmanned aerial system-derived digital elevation map of the field site was created for spatial analysis. A subset of the samples was measured for the short-lived isotopes 137Cs and 210Pbex, which serve as proxy erosion rates. Erosional soils were found to have less organic carbon and total nitrogen than depositional soils. There were clear differences in the data between the two plant types: jojoba catenae had higher short-lived isotope activity, lower carbon and nitrogen, and smaller canopies than those of palo verde, suggesting lower erosion rates and nutrient contributions from jojoba plants. This research quantifies the importance of biota on influencing hillslope and soil dynamics in a semi-arid field site in central AZ and finishes with a discussion on the global implications for soil sustainability.
ContributorsAlter, Samuel (Author) / Heimsath, Arjun M (Thesis advisor) / Throop, Heather L (Committee member) / Walker, Ian J (Committee member) / Arizona State University (Publisher)
Created2018
134651-Thumbnail Image.png
Description
“Extremophile” is used to describe life that has adapted to extreme conditions and the conditions they live in are often used to understand the limits of life. In locations with low precipitation and high solar radiation, photosynthetic cyanobacteria can colonize the underside of quartz fragments, forming ‘hypoliths.’ The quartz provides

“Extremophile” is used to describe life that has adapted to extreme conditions and the conditions they live in are often used to understand the limits of life. In locations with low precipitation and high solar radiation, photosynthetic cyanobacteria can colonize the underside of quartz fragments, forming ‘hypoliths.’ The quartz provides protection against wind, reduces solar radiation, and slows the rate of evaporation following infrequent rain or fog events. In most desert systems, vascular plants are the main primary producers. However, hypoliths might play a key role in carbon fixation in hyperarid deserts that are mostly devoid of vegetation. I investigated hypolith distribution and carbon fixation at six sites along a rainfall and fog gradient in the central Namib Desert in Namibia. I used line point intersect transects to assess ground cover (bare soil, colonized quartz fragment, non-colonized quartz fragment, non-quartz rock, grass, or lichen) at each site. Additionally, at each site I selected 12 hypoliths and measured cyanobacteria colonization on quartz and measured CO2 flux of hypoliths at five of the six sites.
Ground cover was fairly similar among sites, with bare ground > non-colonized quartz fragments > colonized quartz fragments > non-quartz rocks. Grass was present only at the site with the highest mean annual precipitation (MAP) where it accounted for 1% of ground cover. Lichens were present only at the lowest MAP site, where they accounted for 30% of ground cover. The proportion of quartz fragments colonized generally increased with MAP, from 5.9% of soil covered by colonized hypoliths at the most costal (lowest MAP) site, to 18.7% at the most inland (highest MAP) site. There was CO2 uptake from most hypoliths measured, with net carbon uptake rates ranging from 0.3 to 6.4 μmol m-2 s-1 on well hydrated hypoliths. These carbon flux values are similar to previous work in the Mojave Desert. Our results suggest that hypoliths might play a key role in the fixation of organic carbon in hyperarid ecosystems where quartz fragments are abundant, with MAP constraining hypolith abundance. A better understanding of these extremophiles and the niche they fill could give an understanding of how microbial life might exist in extraterrestrial environments similar to hyperarid deserts.
ContributorsMonus, Brittney Daniel (Author) / Throop, Heather (Thesis director) / Hall, Sharon (Committee member) / Cadillo-Quiroz, Hinsby (Committee member) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
147631-Thumbnail Image.png
Description

Drylands, though one of the largest biomes, are also one of the most understudied biomes on the planet. This leaves scientists with limited understanding of unique life forms that have adapted to live in these arid environments. One such life form is the hypolithic microbial community; these are autotrophic cyanobacteria

Drylands, though one of the largest biomes, are also one of the most understudied biomes on the planet. This leaves scientists with limited understanding of unique life forms that have adapted to live in these arid environments. One such life form is the hypolithic microbial community; these are autotrophic cyanobacteria colonies that can be found on the underside of translucent rocks in deserts. With the light that filters through the rock above them, the microbes can photosynthesize and fix carbon from the atmosphere into the soil. In this study I looked at hypolith-like rock distribution in the Namib Desert by using image recognition software. I trained a Mask R-CNN network to detect quartz rock in images from the Gobabeb site. When the method was analyzed using the entire data set, the distribution of rock sizes between the manual annotations and the network predictions was not similar. When evaluating rock sizes smaller than 0.56 cm2 the method showed statistical significance in support of being a promising data collection method. With more training and corrective effort on the network, this method shows promise to be an accurate and novel way to collect data efficiently in dryland research.

ContributorsCollins, Catherine (Author) / Throop, Heather (Thesis director) / Das, Jnaneshwar (Committee member) / Aparecido, Luiza (Committee member) / School of Earth and Space Exploration (Contributor) / School of Art (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
141315-Thumbnail Image.png
Description

The majority of trust research has focused on the benefits trust can have for individual actors, institutions, and organizations. This “optimistic bias” is particularly evident in work focused on institutional trust, where concepts such as procedural justice, shared values, and moral responsibility have gained prominence. But trust in institutions may

The majority of trust research has focused on the benefits trust can have for individual actors, institutions, and organizations. This “optimistic bias” is particularly evident in work focused on institutional trust, where concepts such as procedural justice, shared values, and moral responsibility have gained prominence. But trust in institutions may not be exclusively good. We reveal implications for the “dark side” of institutional trust by reviewing relevant theories and empirical research that can contribute to a more holistic understanding. We frame our discussion by suggesting there may be a “Goldilocks principle” of institutional trust, where trust that is too low (typically the focus) or too high (not usually considered by trust researchers) may be problematic. The chapter focuses on the issue of too-high trust and processes through which such too-high trust might emerge. Specifically, excessive trust might result from external, internal, and intersecting external-internal processes. External processes refer to the actions institutions take that affect public trust, while internal processes refer to intrapersonal factors affecting a trustor’s level of trust. We describe how the beneficial psychological and behavioral outcomes of trust can be mitigated or circumvented through these processes and highlight the implications of a “darkest” side of trust when they intersect. We draw upon research on organizations and legal, governmental, and political systems to demonstrate the dark side of trust in different contexts. The conclusion outlines directions for future research and encourages researchers to consider the ethical nuances of studying how to increase institutional trust.

ContributorsNeal, Tess M.S. (Author) / Shockley, Ellie (Author) / Schilke, Oliver (Author)
Created2016
162248-Thumbnail Image.png
Description

Drylands cover almost half of the land surface on Earth, yet there is still little understood of the processes in these ecosystems. This project studied the impact of macroclimate (precipitation and temperature in large regions) in comparison to microclimate (the climate under canopy versus in the open) to learn more

Drylands cover almost half of the land surface on Earth, yet there is still little understood of the processes in these ecosystems. This project studied the impact of macroclimate (precipitation and temperature in large regions) in comparison to microclimate (the climate under canopy versus in the open) to learn more about the drivers of litter decomposition in drylands.

ContributorsMcGroarty, Megan (Author) / Throop, Heather (Thesis director) / Trembath-Reichert, Elizabeth (Committee member) / Reed, Sasha (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor) / School of Sustainability (Contributor)
Created2021-12
189364-Thumbnail Image.png
Description
Flowering phenology offers a sensitive and reliable biological indicator of climate change because plants use climatic and other environmental cues to initiate flower production. Drylands are the largest terrestrial biome, but with unpredictable precipitation patterns and infertile soils, they are particularly vulnerable to climate change. There is a need to

Flowering phenology offers a sensitive and reliable biological indicator of climate change because plants use climatic and other environmental cues to initiate flower production. Drylands are the largest terrestrial biome, but with unpredictable precipitation patterns and infertile soils, they are particularly vulnerable to climate change. There is a need to increase our comprehension of how dryland plants might respond and adapt to environmental changes. I conducted a meta-analysis on the flowering phenology of dryland plants and showed that some species responded to climate change through accelerated flowering, while others delayed their flowering dates. Dryland plants advanced their mean flowering dates by 2.12 days decade-1, 2.83 days °C-1 and 2.91 days mm-1, respectively, responding to time series, temperature, and precipitation. Flowering phenology responses varied across taxonomic and functional groups, with the grass family Poaceae (-3.91 days decade1) and bulb forming Amaryllidaceae (-0.82 days decade1) showing the highest and lowest time series responses respectively, while Brassicaceae was not responsive. Analysis from herbarium specimens collected across Namibian drylands, spanning 26 species and six families, revealed that plants in hyper-arid to arid regions have lower phenological sensitivity to temperature (-9 days °C-1) and greater phenological responsiveness to precipitation (-0.56 days mm-1) than those in arid to semi-arid regions (-17 days °C-1, -0.35 days mm-1). The flowering phenology of serotinous plants showed greater sensitivity to both temperature and precipitation than that of non-serotinous plants. I used rainout shelters to reduce rainfall in a field experiment and showed that drought treatment advanced the vegetative and reproductive phenology of Cleome gynandra, a highly nutritional and medicinal semi-wild vegetable species. The peak leaf length date, peak number of leaves date, and peak flowering date of Cleome gynandra advanced by six, 10 and seven days, respectively. Lastly, I simulated drought and flood in a greenhouse experiment and found that flooding conditions resulted in higher germination percentage of C. gynandra than drought. My study found that the vegetative, and flowering phenology of dryland plants is responsive to climate change, with differential responses across taxonomic and functional groups, and aridity zones, which could alter the structure and function of these systems.
ContributorsKangombe, Fransiska Ndiiteela (Author) / Throop, Heather (Thesis advisor) / Sala, Osvaldo (Committee member) / Vivoni, Enrique (Committee member) / Pigg, Kathleen (Committee member) / Hultine, Kevin (Committee member) / Kwembeya, Ezekeil (Committee member) / Arizona State University (Publisher)
Created2023
189371-Thumbnail Image.png
Description
In the southwestern United States, water is a precious resource that influences landscapes and their respective ecosystems. Ephemeral lakes, known as playas, are drainage points for closed or endorheic basins and serve as important locations for plant productivity, biogeochemical processes, and groundwater recharge. In this study, I explore the hydrologic

In the southwestern United States, water is a precious resource that influences landscapes and their respective ecosystems. Ephemeral lakes, known as playas, are drainage points for closed or endorheic basins and serve as important locations for plant productivity, biogeochemical processes, and groundwater recharge. In this study, I explore the hydrologic dynamics of eighteen (18) instrumented playas in the Jornada Basin of the Chihuahuan Desert with respect to the drivers of playa inundation and how their behaviors vary in space and time. To this end, I combine water level observations in playas with gauge-corrected radar precipitation estimates to determine hydrologic dynamics over the more than 6-year period of June 2016 to October 2022. Results indicate that all playa inundation events are associated with precipitation and that 76% of events occur during the warm season from April to September that is characterized by the North American monsoon. Mean annual runoff ratios in the playa catchments range from 0.01% to 9.28%. I observe precipitation depth and 60-minute intensity thresholds for playa inundation ranging from 16.1 to 71.3 mm and 8.8 to 40.5 mm/hr, respectively. Although playa inundation is typically caused by high rainfall amounts and intensities, other factors such as antecedent wetness conditions and the spatial variability of rainfall within the playa catchment also play a role. The magnitudes, durations, and occurrence of inundation events vary among playas, but their responses to precipitation generally agree with groupings determined based on their geological origin. Logistic and linear regressions across all playas reveal the relative importance of catchment variables, such as area, sand fraction, slope, and the percentage of bare ground. It is shown that larger catchment areas are strongly associated with a lower likelihood of inundation and higher precipitation thresholds for inundation. An analysis of precipitation data from 1916 to 2015 leads to the estimation of historical playa inundation and suggests that an increase has occurred in the frequency of large rainfall events that may be associated with increasing frequency of playa inundation. This study highlights the complex nature of playa inundation in the Jornada Basin, which can change over time in an evolving climate and landscape.
ContributorsKimsal, Charles Robert (Author) / Vivoni, Enrique R (Thesis advisor) / Whipple, Kelin X (Committee member) / Li, Jiwei (Committee member) / Arizona State University (Publisher)
Created2023
157859-Thumbnail Image.png
Description
Soil organic carbon (SOC) is a critical component of the global carbon (C) cycle, accounting for more C than the biotic and atmospheric pools combined. Microbes play an important role in soil C cycling, with abiotic conditions such as soil moisture and temperature governing microbial activity and subsequent soil C

Soil organic carbon (SOC) is a critical component of the global carbon (C) cycle, accounting for more C than the biotic and atmospheric pools combined. Microbes play an important role in soil C cycling, with abiotic conditions such as soil moisture and temperature governing microbial activity and subsequent soil C processes. Predictions for future climate include warmer temperatures and altered precipitation regimes, suggesting impacts on future soil C cycling. However, it is uncertain how soil microbial communities and subsequent soil organic carbon pools will respond to these changes, particularly in dryland ecosystems. A knowledge gap exists in soil microbial community responses to short- versus long-term precipitation alteration in dryland systems. Assessing soil C cycle processes and microbial community responses under current and altered precipitation patterns will aid in understanding how C pools and cycling might be altered by climate change. This study investigates how soil microbial communities are influenced by established climate regimes and extreme changes in short-term precipitation patterns across a 1000 m elevation gradient in northern Arizona, where precipitation increases with elevation. Precipitation was manipulated (50% addition and 50% exclusion of ambient rainfall) for two summer rainy seasons at five sites across the elevation gradient. In situ and ex situ soil CO2 flux, microbial biomass C, extracellular enzyme activity, and SOC were measured in precipitation treatments in all sites. Soil CO2 flux, microbial biomass C, extracellular enzyme activity, and SOC were highest at the three highest elevation sites compared to the two lowest elevation sites. Within sites, precipitation treatments did not change microbial biomass C, extracellular enzyme activity, and SOC. Soil CO2 flux was greater under precipitation addition treatments than exclusion treatments at both the highest elevation site and second lowest elevation site. Ex situ respiration differed among the precipitation treatments only at the lowest elevation site, where respiration was enhanced in the precipitation addition plots. These results suggest soil C cycling will respond to long-term changes in precipitation, but pools and fluxes of carbon will likely show site-specific sensitivities to short-term precipitation patterns that are also expected with climate change.
ContributorsMonus, Brittney (Author) / Throop, Heather L (Thesis advisor) / Ball, Becky A (Committee member) / Hultine, Kevin R (Committee member) / Munson, Seth M (Committee member) / Arizona State University (Publisher)
Created2019
157650-Thumbnail Image.png
Description

Nitrogen is an essential, often limiting, element for biological growth that can act as a pollutant if present in excess. Nitrogen is primarily transported by water from uplands to streams and eventually to recipient lakes, estuaries, and wetlands, but can be modulated by biological uptake and transformation along these flowpaths.

Nitrogen is an essential, often limiting, element for biological growth that can act as a pollutant if present in excess. Nitrogen is primarily transported by water from uplands to streams and eventually to recipient lakes, estuaries, and wetlands, but can be modulated by biological uptake and transformation along these flowpaths. As a result, nitrogen can accumulate in aquatic ecosystems if supply is high or if biological retention is low. Dryland and urban ecosystems offer interesting contrasts in water supply, which limits transport and biological activity in drylands, and nitrogen supply that increases with human activity. In my dissertation, I ask: What is the relative balance among nitrogen retention, removal, and transport processes in dryland watersheds, and what is the fate of exported nitrogen? My dissertation research demonstrates that water is a major control on where and when nitrogen is retained and removed versus exported to downstream ecosystems. I used a mass-balance model based on synoptic surveys to study seasonal and spatial patterns in nitrate loading to a dryland stream network. I found that irrigation diversions transport nitrate from agricultural areas to the stream network year-round, even during dry seasons, and are an important driver of nitrate loading. I further explored how seasonal precipitation influences flood nutrient export in an intermittent desert stream by coupling long-term data of flood-water chemistry with stream discharge and precipitation data. I found that higher precipitation prior to a flood fills water storage sites in the catchment, leading to larger floods. In addition, higher antecedent precipitation stimulates biological nitrogen retention in the uplands, leading to lower nitrogen concentration in floods. Finally, I evaluated the consequences of nitrogen export from watersheds on how urban wetlands attenuate nitrate through denitrification that permanently removes nitrogen, and dissimilatory nitrate reduction to ammonium (DNRA) that retains nitrogen in another biologically reactive form. I found that DNRA becomes proportionally more important with low nitrate concentration, thereby retaining nitrogen as ammonium. Collectively, my dissertation research addresses how dryland and urban ecosystems can be integrated into models of watershed nitrogen cycling.

ContributorsHandler, Amalia Marie Baiyor (Author) / Grimm, Nancy (Thesis advisor) / Helton, Ashley M (Committee member) / Hartnett, Hilairy E (Committee member) / Ruddell, Benjamin L (Committee member) / Arizona State University (Publisher)
Created2019
158082-Thumbnail Image.png
Description
Climate change is increasing global surface temperatures, intensifying droughts and increasing rainfall variation, particularly in drylands. Understanding how dryland plant communities respond to climate change-induced rainfall changes is crucial for implementing effective conservation strategies. Concurrent with climate change impacts on drylands is woody encroachment: an increase in abundance of woody

Climate change is increasing global surface temperatures, intensifying droughts and increasing rainfall variation, particularly in drylands. Understanding how dryland plant communities respond to climate change-induced rainfall changes is crucial for implementing effective conservation strategies. Concurrent with climate change impacts on drylands is woody encroachment: an increase in abundance of woody plant species in areas formerly dominated by grasslands or savannahs. For example, the woody plant, Prosopis velutina (velvet mesquite), has encroached into grasslands regionally over the past century. From an agricultural perspective, P. velutina is an invasive weed that hinders cattle forage. Understanding how P. velutina will respond to climate change-induced rainfall changes can be useful for management and conservation efforts. Prosopis velutina was used to answer the following question: Is there a significant interactive effect of mean soil water moisture content and pulse frequency on woody seedling survival and growth in dryland ecosystems? There were 256 P. velutina seedlings sourced from the Santa Rita Experimental Range in southern Arizona grown under four watering treatments where mean and pulse frequency were manipulated over two months. Data were collected on mortality, stem height, number of leaves, instantaneous gas exchange, chlorophyll fluorescence, biomass, and the leaf carbon to nitrogen (C:N) ratio. Mortality was low across treatments. Pulse frequency had less impact across response variables than the mean amount of water received. This may indicate that P. velutina seedlings are relatively insensitive to rainfall timing and are more responsive to rainfall amount. Prosopis velutina in the low mean soil moisture treatments lost a majority of their leaves and had greater biomass allocation to roots. Prosopis velutina’s ability to survive in low soil moisture conditions and invest in root biomass can allow it to persist as drylands are further affected by climate change. Prosopis velutina could benefit ecosystems where native plants are at risk due to rainfall variation if P. velutina occupies a similar niche space. Due to conflicting viewpoints of P. velutina as an invasive species, it’s important to examine P. velutina from both agricultural and conservation perspectives. Further analysis on the benefits to P. velutina in these ecosystems is recommended.
ContributorsDavis, Ashley R. (Author) / Throop, Heather (Thesis advisor) / Hultine, Kevin (Committee member) / Sala, Osvaldo (Committee member) / Arizona State University (Publisher)
Created2020