Matching Items (3)
Filtering by

Clear all filters

153689-Thumbnail Image.png
Description
Damage to the central nervous system due to spinal cord or traumatic brain injury, as well as degenerative musculoskeletal disorders such as arthritis, drastically impact the quality of life. Regeneration of complex structures is quite limited in mammals, though other vertebrates possess this ability. Lizards are the most closely related

Damage to the central nervous system due to spinal cord or traumatic brain injury, as well as degenerative musculoskeletal disorders such as arthritis, drastically impact the quality of life. Regeneration of complex structures is quite limited in mammals, though other vertebrates possess this ability. Lizards are the most closely related organism to humans that can regenerate de novo skeletal muscle, hyaline cartilage, spinal cord, vasculature, and skin. Progress in studying the cellular and molecular mechanisms of lizard regeneration has previously been limited by a lack of genomic resources. Building on the release of the genome of the green anole, Anolis carolinensis, we developed a second generation, robust RNA-Seq-based genome annotation, and performed the first transcriptomic analysis of tail regeneration in this species. In order to investigate gene expression in regenerating tissue, we performed whole transcriptome and microRNA transcriptome analysis of regenerating tail tip and base and associated tissues, identifying key genetic targets in the regenerative process. These studies have identified components of a genetic program for regeneration in the lizard that includes both developmental and adult repair mechanisms shared with mammals, indicating value in the translation of these findings to future regenerative therapies.
ContributorsHutchins, Elizabeth (Author) / Kusumi, Kenro (Thesis advisor) / Rawls, Jeffrey A. (Committee member) / Denardo, Dale F. (Committee member) / Huentelman, Matthew J. (Committee member) / Arizona State University (Publisher)
Created2015
184109-Thumbnail Image.png
Description

Heat shock factors (HSFs) are transcriptional regulators that play a crucial role in the cellular response to environmental stress, particularly heat stress. Understanding the evolution of HSFs can provide insights into the adaptation of organisms to their changing environments. This project explored the evolution of HSFs within tetrapods, a grou

Heat shock factors (HSFs) are transcriptional regulators that play a crucial role in the cellular response to environmental stress, particularly heat stress. Understanding the evolution of HSFs can provide insights into the adaptation of organisms to their changing environments. This project explored the evolution of HSFs within tetrapods, a group of animals that includes amphibians, reptiles, turtles, and mammals. Through an analysis of the available genomic data and subsequent genomic methodologies, HSFs have undergone significant changes throughout tetrapod evolution, as evidenced by loss events observed in protein sequences of the species under examination. Moreover, several conserved and divergent regions within HSF proteins were identified, which may reflect functional differences between HSFs in different tetrapod lineages. Our findings suggest that the evolution of HSFs has contributed to the adaptation of tetrapods to their diverse environments and that further research on the functional and regulatory differences between HSFs may provide a better understanding of how organisms cope with stress in heat-stressed environments.

ContributorsSharma, Yash (Author) / Kusumi, Kenro (Thesis director) / Benson, Derek (Committee member) / Dolby, Greer (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description
Wound healing is a complex tissue response that requires a coordinated interplay of multiple cells in orchestrated biological processes to restore the skin's barrier function post-injury. Proteolytic enzymes, in particular matrix metalloproteinases (MMPs), contribute to all phases of the healing process by regulating immune cell influx, clearing out the extracellular

Wound healing is a complex tissue response that requires a coordinated interplay of multiple cells in orchestrated biological processes to restore the skin's barrier function post-injury. Proteolytic enzymes, in particular matrix metalloproteinases (MMPs), contribute to all phases of the healing process by regulating immune cell influx, clearing out the extracellular matrix (ECM), and remodeling scar tissue. As a result of these various functions in the healing of skin wounds, uncontrolled activities of MMPs are associated with impaired wound healing. The MMP gene family consists of a highly conserved set of genes. Deleterious mutations in MMP genes cause developmental phenotypes that affect the heart, skeleton, and immune system response. The availability of contiguous draft genomes of non-model organisms enables the study of gene families through analysis of synteny and sequence identity. My project is aimed at conducting a comparative genomic analysis of the MMP gene family from the genomes of 29 tetrapod species—with an emphasis on reptiles. Results regarding the similarities and differences among MMP protein sequences can be further investigated to shed light on the causes which give rise to various adaptive mutations for specific species groups.
ContributorsYu, Alexander (Author) / Kusumi, Kenro (Thesis director) / Dolby, Greer (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-12