Matching Items (15)
Filtering by

Clear all filters

136912-Thumbnail Image.png
Description
Using data from the Arizona Radio Observatory Submillimeter Telescope, we have studied the active, star-forming region of the R Coronae Australis molecular cloud in 12CO (2-1), 13CO (2-1), and HCO+ (3-2). We baselined and mapped the data using CLASS. It was then used to create integrated intensity, outflow, and centroid

Using data from the Arizona Radio Observatory Submillimeter Telescope, we have studied the active, star-forming region of the R Coronae Australis molecular cloud in 12CO (2-1), 13CO (2-1), and HCO+ (3-2). We baselined and mapped the data using CLASS. It was then used to create integrated intensity, outflow, and centroid velocity maps in IDL. These clearly showed the main large outflow, and then we identified a few other possible outflows.
ContributorsBlumm, Margaret Elizabeth (Author) / Groppi, Christopher (Thesis director) / Bowman, Judd (Committee member) / Mauskopf, Philip (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2014-05
137153-Thumbnail Image.png
Description
An automated test system was developed to characterize detectors for the Kilopixel Array Pathfinder Project (KAPPa). KAPPa is an astronomy instrument that detects light at terahertz wavelengths using a 16-pixel heterodyne focal plane array. Although primarily designed for the KAPPa receiver, the test system can be used with other instruments

An automated test system was developed to characterize detectors for the Kilopixel Array Pathfinder Project (KAPPa). KAPPa is an astronomy instrument that detects light at terahertz wavelengths using a 16-pixel heterodyne focal plane array. Although primarily designed for the KAPPa receiver, the test system can be used with other instruments to automate tests that might be tedious and time-consuming by hand. Mechanical components of the test setup include an adjustable structure of aluminum t-slot framing that supports a rotating chopper. Driven by a stepper motor, the chopper alternates between blackbodies at room temperature and 77 K. The cold load consists of absorbing material submerged in liquid nitrogen in an open Styrofoam cooler. Scripts written in Matlab and Python control the mechanical system, interface with receiver components, and process data. To calculate the equivalent noise temperature of a receiver, the y-factor method is used. Test system operation was verified by sweeping the local oscillator frequency and power level for two room temperature Schottky diode receivers from Virginia Diodes, Inc. The test system was then integrated with the KAPPa receiver, providing a low cost, simple, adaptable means to measure noise with minimal user intervention.
ContributorsKuenzi, Linda Christine (Author) / Groppi, Christopher (Thesis director) / Mauskopf, Philip (Committee member) / Kulesa, Craig (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137307-Thumbnail Image.png
DescriptionUtilizing non-western mythology, narratives, and stories as the inspiration for a four part illustration series. Documenting the research of various myths surrounding certain stars and constellations as well as the technical process of creating the digital paintings which comprised the final output of the project.
ContributorsBoccieri, Alexa Eliana (Author) / Swanner, Leandra (Thesis director) / Heywood, William (Committee member) / School of Arts, Media and Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2014-05
147535-Thumbnail Image.png
Description

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for SPARCS have demonstrated more than five times the in-band quantum efficiency of the detectors of GALEX. Given that red:UV photon emission from cool, low-mass stars can be million:one, UV observation of thes stars are susceptible to red light contamination. In addition to the high efficiency delta-doped detectors, SPARCS will include red-rejection filters to help minimize red leak. Even so, careful red-rejection and photometric calibration is needed. As was done for GALEX, white dwarfs are used for photometric calibration in the UV. We find that the use of white dwarfs to calibrate the observations of red stars leads to significant errors in the reported flux, due to the differences in white dwarf and red dwarf spectra. Here we discuss the planned SPARCS calibration model and the color correction, and demonstrate the importance of this correction when recording UV measurements of M stars taken by SPARCS.

ContributorsOsby, Ella (Author) / Shkolnik, Evgenya (Thesis director) / Ardila, David (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
134612-Thumbnail Image.png
Description
We designed and constructed a cryostat setup for MKID detectors. The goal for the cryostat is to have four stages: 40K, 4K, 1K and 250mK. Prior to the start of my thesis, the cryostat was reaching 70K and 9K on the first and second stages respectively. During the first semester

We designed and constructed a cryostat setup for MKID detectors. The goal for the cryostat is to have four stages: 40K, 4K, 1K and 250mK. Prior to the start of my thesis, the cryostat was reaching 70K and 9K on the first and second stages respectively. During the first semester of my thesis I worked on getting the second stage to reach below 4K such that it would be cold enough to add a sorption fridge to reach 250mK. Various parts were machined for the cryostat and some tweaks were made to existing pieces. The largest changes were we thinned our stainless steel supports from 2mm to 10mil and we added roughly 6-10 layers of multi-layer insulation to the first and second stages. Our result was that we now reach temperatures of 36K and 2.6K on the first and second stages respectively. Next we added the sorption fridge to the 4K stage by having the 4K stage remachined to allow the sorption fridge to be mounted to the stage. Then I designed a final, two stage, setup for the 1K and 250mK stages that has maximum capabilities of housing a six inch wafer for testing. The design was sent to a machinist, but the parts were unfinished by the end of my thesis, so the parts and stage were not tested. Once the cryostat was fully tested and proven to reach the necessary temperatures, preliminary testing was done on a Microwave Kinetic Inductance Detector (MKID) provided by Stanford. Data was collected on the resonance and quality factor as they shifted with final stage temperature (5K to 285mK) and with input power (60dB to 15dB). The data was analyzed and the results agreed within expectations, as the resonant frequency and quality factor shifted down with increased temperature on the MKID. Finally, a noise characterization setup was designed to test the noise of devices, but was not fully implemented.
ContributorsAbers, Paul (Author) / Mauskopf, Phil (Thesis director) / Groppi, Chris (Committee member) / Department of Physics (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135303-Thumbnail Image.png
Description
Balloon-borne telescopes are an economic alternative to scientists seeking to study light compared to other ground- and space-based alternatives, such as the Keck Observatory and the Hubble Space Telescope. One such balloon-borne telescope is the Balloon-borne Large Aperture Submillimeter Telescope, or simply BLAST. Arizona State University was tasked with assembling

Balloon-borne telescopes are an economic alternative to scientists seeking to study light compared to other ground- and space-based alternatives, such as the Keck Observatory and the Hubble Space Telescope. One such balloon-borne telescope is the Balloon-borne Large Aperture Submillimeter Telescope, or simply BLAST. Arizona State University was tasked with assembling one of the primary optics plates for the telescope's next mission. This plate, detailed in the following paragraphs, is designed to detect and capture submillimeter wavelength light. This will help scientists understand the formation and early life of stars. Due to its highly sensitive nature detecting light, the optics plate had to be carefully assembled following a strict assembly and testing procedure. Initially, error tolerances for the mirrors and plate were developed using a computer model, later to be compared to measured values. The engineering decisions made throughout the process pertained to every aspect of the plate, from ensuring the compliance of the engineering drawings to the polishing of the mirrors for testing. The assembly procedure itself was verified at the conclusion using a coordinate measuring machine (CMM) to analyze whether or not the plate was within defined error tolerances mentioned above. This data was further visualized within the document to show that the assembly procedure of the BLAST optics plate was successful. The largest error margins seen were approximately one order of magnitude lower than their tolerated limits, reflecting good engineering judgement and care applied to the manufacturing process. The plate has since been shipped offsite to continue testing and the assembly team is confident it will perform well within expected parameters.
ContributorsDombrowski, Shane Matthew (Author) / Groppi, Christopher (Thesis director) / Mauskopf, Philip (Committee member) / Underhill, Matthew (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135167-Thumbnail Image.png
Description
Abstract Located in southeastern Arizona, the Large Binocular Telescope is a great local resource for ASU astronomy/cosmology researchers. As a ground-based observatory, the Large Binocular Telescope can effectively provide deep, complementary observations of science fields in the wavelength range of 3,500 to 10,000 Angstroms. This gives scientists a lot of

Abstract Located in southeastern Arizona, the Large Binocular Telescope is a great local resource for ASU astronomy/cosmology researchers. As a ground-based observatory, the Large Binocular Telescope can effectively provide deep, complementary observations of science fields in the wavelength range of 3,500 to 10,000 Angstroms. This gives scientists a lot of opportunity for various science projects, which can lead to massive amounts of observations being taken by research schools with ties to the LBT. Such is the case with ASU, which has obtained over 30 hours of data in just the SDT Uspec filter on board the Large Binocular Camera (Blue) and much more time in other filters observing longer wavelengths. Because of this, there is a huge need for establishing a system that will allow the reduction of raw astronomical images from the LBT to be quickly, but accurately. This manuscript serves as a presentation of the work done over the 2015-2016 school year to establish a pipeline for reducing LBT raw science images as well as a guide for future undergraduates and graduates to reduce data on their own.
ContributorsVehonsky, Jacob Ryan (Author) / Windhorst, Rogier (Thesis director) / Jansen, Rolf (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
171987-Thumbnail Image.png
Description
This thesis presents the results of a brown dwarf companion direct imaging survey. Over a total of 4 nights, 200 B and A stars were imaged using the Keck telescope and the Near Infrared Camera 2 (NIRC2). Presented here are preliminary results from the nights of 04 June 2014 and

This thesis presents the results of a brown dwarf companion direct imaging survey. Over a total of 4 nights, 200 B and A stars were imaged using the Keck telescope and the Near Infrared Camera 2 (NIRC2). Presented here are preliminary results from the nights of 04 June 2014 and 17 December 2013. Brown dwarfs are partially degenerate objects that have masses between approximately 13 MJup and 75 MJup. Currently, the number of brown dwarf companions found around high mass stars is small. Finding brown dwarfs as companions to B and A stars will allow astronomers to study these objects when they are young and bright, giving key insights into their formation and evolution. \par A pipeline was written specifically for these data sets that includes dark subtraction, flat field correction, bad pixel correction, distortion correction, centering, filtering, and point spread function (PSF) subtraction. This subtraction was accomplished using the Karhunen-Loeve Image Processing (KLIP) algorithm which employs principal component analysis and Karhunen-Loeve (KL) transforms to subtract out starlight and artifacts from the images and allow for easier detection of a candidate companion. \par Only candidate companions from the night of 04 June 2014 were analyzed, with 95 candidate companions found around 22 stars. Due to a lack of some necessary images, 91 companions around 20 stars were analyzed and their masses were found to be approximately 6 MJup to 150 MJup with projected separations from the host star of approximately 100AU to 900AU. An upper limit of 6.6% was placed on stellar companion frequency and an upper limit of 93% was placed on brown dwarf companion frequency. This survey achieved a median sensitivity of ΔK of 12.6 at 1" and a ΔK of 15.1 at 3.6". Further observations will be required to determine whether the candidates found are true co-moving companions or background stars not bound to the host star.
ContributorsGarani, Jasmine (Author) / Patience, Jennifer (Thesis advisor) / Simon, Molly (Committee member) / Line, Michael (Committee member) / Nielsen, Eric (Committee member) / Arizona State University (Publisher)
Created2022
190697-Thumbnail Image.png
Description
With the ability to observe the atmospheres of terrestrial exoplanets via transit spectroscopy on the near-term horizon, the possibility of atmospheric biosignatures has received considerable attention in astrobiology. While traditionally exoplanet scientists looking for life focused on biologically relevant trace gases such as O2 and CH4, this approach has raised

With the ability to observe the atmospheres of terrestrial exoplanets via transit spectroscopy on the near-term horizon, the possibility of atmospheric biosignatures has received considerable attention in astrobiology. While traditionally exoplanet scientists looking for life focused on biologically relevant trace gases such as O2 and CH4, this approach has raised the spectre of false positives. Therefore, to address these shortcomings, a new set of methods is required to provide higher confidence in life detection. One possible approach is measuring the topology of atmospheric chemical reaction networks (CRNs). To investigate and assess this approach, the ability of network-theoretic metrics to distinguish the distance from thermochemical equilibrium in the atmosphere of hot jupiters was tested. After modeling the atmospheres of hot jupiters over a range of initial conditions using the VULCAN modeling package, atmospheric CRNs were constructed from the converged models and their topology measured using the Python package NetworkX. I found that network metrics were able to predict the distance from thermochemical equilibrium better than atmospheric species abundances alone. Building on this success, I modeled 30,000 terrestrial worlds. These models divided into two categories: Anoxic Archean Earth-like planets that varied in terms of CH4 surface flux (modeled as either biotic or abiotic in origin), and modern Earth-like planets with and without a surface flux of CCl2F2 (to represent the presence of industrial civilizations). I constructed atmospheric CRNs from the converged models, and analyzed their topology. I found that network metrics could distinguish between atmospheres with and without the presence of life or technology. In particular, mean degree and average shortest path length consistently performed better at distinguishing between abiotic and biotic Archean-like atmospheres than CH4 abundance.
ContributorsFisher, Theresa Mason (Author) / Walker, Sara I (Thesis advisor) / Hartnett, Hilairy (Committee member) / Line, Michael (Committee member) / Shkolnik, Evgenya (Committee member) / Okie, Jordan (Committee member) / Arizona State University (Publisher)
Created2023
Description

In this thesis, several different methods for detecting and removing satellite streaks from astronomic images were evaluated and compared with a new machine learning based approach. Simulated data was generated with a variety of conditions, and the performance of each method was evaluated both quantitatively, using Mean Absolute Error (MAE)

In this thesis, several different methods for detecting and removing satellite streaks from astronomic images were evaluated and compared with a new machine learning based approach. Simulated data was generated with a variety of conditions, and the performance of each method was evaluated both quantitatively, using Mean Absolute Error (MAE) against a ground truth detection mask and processing throughput of the method, as well as qualitatively, examining the situations in which each model performs well and poorly. Detection methods from existing systems Pyradon and ASTRiDE were implemented and tested. A machine learning (ML) image segmentation model was trained on simulated data and used to detect streaks in test data. The ML model performed favorably relative to the traditional methods tested, and demonstrated superior robustness in general. However, the model also exhibited some unpredictable behavior in certain scenarios which should be considered. This demonstrated that machine learning is a viable tool for the detection of satellite streaks in astronomic images, however special care must be taken to prevent and to minimize the effects of unpredictable behavior in such models.

ContributorsJeffries, Charles (Author) / Acuna, Ruben (Thesis director) / Martin, Thomas (Committee member) / Bansal, Ajay (Committee member) / Barrett, The Honors College (Contributor) / Software Engineering (Contributor)
Created2023-05