Matching Items (2)
Filtering by

Clear all filters

136546-Thumbnail Image.png
Description
The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding

The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding of human gait is limited by the amount of research we conduct in relation to human walking mechanisms and their characteristics. In order to better understand these characteristics and the systems involved in the generation of human gait, it is necessary to increase the depth and range of research pertaining to walking motion. Specifically, there has been a lack of investigation into a particular area of human gait research that could potentially yield interesting conclusions about gait rehabilitation, which is the effect of surface stiffness on human gait. In order to investigate this idea, a number of studies have been conducted using experimental devices that focus on changing surface stiffness; however, these systems lack certain functionality that would be useful in an experimental scenario. To solve this problem and to investigate the effect of surface stiffness further, a system has been developed called the Variable Stiffness Treadmill system (VST). This treadmill system is a unique investigative tool that allows for the active control of surface stiffness. What is novel about this system is its ability to change the stiffness of the surface quickly, accurately, during the gait cycle, and throughout a large range of possible stiffness values. This type of functionality in an experimental system has never been implemented and constitutes a tremendous opportunity for valuable gait research in regard to the influence of surface stiffness. In this work, the design, development, and implementation of the Variable Stiffness Treadmill system is presented and discussed along with preliminary experimentation. The results from characterization testing demonstrate highly accurate stiffness control and excellent response characteristics for specific configurations. Initial indications from human experimental trials in relation to quantifiable effects from surface stiffness variation using the Variable Stiffness Treadmill system are encouraging.
ContributorsBarkan, Andrew Robert (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
134461-Thumbnail Image.png
Description
The purpose of this paper was to systematically review current literature regarding the effect of hand splints on aesthetic outcomes for individuals with acquired hand deformities. Hand splints vary in form and function, and are used to maintain or ameliorate hand function and aesthetics. A literature search was performed on

The purpose of this paper was to systematically review current literature regarding the effect of hand splints on aesthetic outcomes for individuals with acquired hand deformities. Hand splints vary in form and function, and are used to maintain or ameliorate hand function and aesthetics. A literature search was performed on peer-reviewed publications that used splinting as an intervention for conservative hand improvement. Evidence from ten randomized clinical trials (published from 2003 to 2015) was evaluated for aesthetic improvement among a total of 659 subjects. Cosmetic outcomes were analyzed by a change in angle measurements, such as extensor lag, ulnar deviation, and passive and active range of motion. Of these ten studies, five focused on hand deformities caused by neurological impairment, while the other five measured those with musculoskeletal complications. Only two of the ten studies concluded that splinting could aesthetically improve the hands, and only one of these reporting statistical significance in its data. The data was not only limited in quantity, but was presented in heterogeneous formats. There was an extensive variation in measured outcomes, intervention protocols, follow-up times, and many other aspects of the studies; this dissimilarity led to difficulty in performing a systematic assessment. The majority of evidence concludes that splinting does not improve the appearance of deformities, however none directly investigated this measure. Therefore, further RCTs that include measurements of cosmetic traits are necessary to better quantify the effect of splinting for management of hand deformities. This review was the first of its kind to evaluate the correction of hand deformities using splints as an intervention.
ContributorsVale, Nicholas Marshall (Author) / Santello, Marco (Thesis director) / Skiba, Jeffry (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor, Contributor) / School of Biological and Health Systems Engineering (Contributor)
Created2017-05