Matching Items (3)

153850-Thumbnail Image.png

A test and confidence set for comparing the location of quadratic growth curves

Description

Quadratic growth curves of 2nd degree polynomial are widely used in longitudinal studies. For a 2nd degree polynomial, the vertex represents the location of the curve in the XY plane. For a quadratic growth curve, we propose an approximate confidence

Quadratic growth curves of 2nd degree polynomial are widely used in longitudinal studies. For a 2nd degree polynomial, the vertex represents the location of the curve in the XY plane. For a quadratic growth curve, we propose an approximate confidence region as well as the confidence interval for x and y-coordinates of the vertex using two methods, the gradient method and the delta method. Under some models, an indirect test on the location of the curve can be based on the intercept and slope parameters, but in other models, a direct test on the vertex is required. We present a quadratic-form statistic for a test of the null hypothesis that there is no shift in the location of the vertex in a linear mixed model. The statistic has an asymptotic chi-squared distribution. For 2nd degree polynomials of two independent samples, we present an approximate confidence region for the difference of vertices of two quadratic growth curves using the modified gradient method and delta method. Another chi-square test statistic is derived for a direct test on the vertex and is compared to an F test statistic for the indirect test. Power functions are derived for both the indirect F test and the direct chi-square test. We calculate the theoretical power and present a simulation study to investigate the power of the tests. We also present a simulation study to assess the influence of sample size, measurement occasions and nature of the random effects. The test statistics will be applied to the Tell Efficacy longitudinal study, in which sound identification scores and language protocol scores for children are modeled as quadratic growth curves for two independent groups, TELL and control curriculum. The interpretation of shift in the location of the vertices is also presented.

Contributors

Agent

Created

Date Created
2015

150016-Thumbnail Image.png

An investigation of power analysis approaches for latent growth modeling

Description

Designing studies that use latent growth modeling to investigate change over time calls for optimal approaches for conducting power analysis for a priori determination of required sample size. This investigation (1) studied the impacts of variations in specified parameters,

Designing studies that use latent growth modeling to investigate change over time calls for optimal approaches for conducting power analysis for a priori determination of required sample size. This investigation (1) studied the impacts of variations in specified parameters, design features, and model misspecification in simulation-based power analyses and (2) compared power estimates across three common power analysis techniques: the Monte Carlo method; the Satorra-Saris method; and the method developed by MacCallum, Browne, and Cai (MBC). Choice of sample size, effect size, and slope variance parameters markedly influenced power estimates; however, level-1 error variance and number of repeated measures (3 vs. 6) when study length was held constant had little impact on resulting power. Under some conditions, having a moderate versus small effect size or using a sample size of 800 versus 200 increased power by approximately .40, and a slope variance of 10 versus 20 increased power by up to .24. Decreasing error variance from 100 to 50, however, increased power by no more than .09 and increasing measurement occasions from 3 to 6 increased power by no more than .04. Misspecification in level-1 error structure had little influence on power, whereas misspecifying the form of the growth model as linear rather than quadratic dramatically reduced power for detecting differences in slopes. Additionally, power estimates based on the Monte Carlo and Satorra-Saris techniques never differed by more than .03, even with small sample sizes, whereas power estimates for the MBC technique appeared quite discrepant from the other two techniques. Results suggest the choice between using the Satorra-Saris or Monte Carlo technique in a priori power analyses for slope differences in latent growth models is a matter of preference, although features such as missing data can only be considered within the Monte Carlo approach. Further, researchers conducting power analyses for slope differences in latent growth models should pay greatest attention to estimating slope difference, slope variance, and sample size. Arguments are also made for examining model-implied covariance matrices based on estimated parameters and graphic depictions of slope variance to help ensure parameter estimates are reasonable in a priori power analysis.

Contributors

Agent

Created

Date Created
2011

134361-Thumbnail Image.png

Statistical Analysis of Power Differences between Experimental Design Software Packages

Description

Based on findings of previous studies, there was speculation that two well-known experimental design software packages, JMP and Design Expert, produced varying power outputs given the same design and user inputs. For context and scope, another popular experimental design software

Based on findings of previous studies, there was speculation that two well-known experimental design software packages, JMP and Design Expert, produced varying power outputs given the same design and user inputs. For context and scope, another popular experimental design software package, Minitab® Statistical Software version 17, was added to the comparison. The study compared multiple test cases run on the three software packages with a focus on 2k and 3K factorial design and adjusting the standard deviation effect size, number of categorical factors, levels, number of factors, and replicates. All six cases were run on all three programs and were attempted to be run at one, two, and three replicates each. There was an issue at the one replicate stage, however—Minitab does not allow for only one replicate full factorial designs and Design Expert will not provide power outputs for only one replicate unless there are three or more factors. From the analysis of these results, it was concluded that the differences between JMP 13 and Design Expert 10 were well within the margin of error and likely caused by rounding. The differences between JMP 13, Design Expert 10, and Minitab 17 on the other hand indicated a fundamental difference in the way Minitab addressed power calculation compared to the latest versions of JMP and Design Expert. This was found to be likely a cause of Minitab’s dummy variable coding as its default instead of the orthogonal coding default of the other two. Although dummy variable and orthogonal coding for factorial designs do not show a difference in results, the methods affect the overall power calculations. All three programs can be adjusted to use either method of coding, but the exact instructions for how are difficult to find and thus a follow-up guide on changing the coding for factorial variables would improve this issue.

Contributors

Agent

Created

Date Created
2017-05