Matching Items (406)
Filtering by

Clear all filters

149708-Thumbnail Image.png
Description
Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a

Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a majority of the information generated and processes taking place are neither integrated nor interoperable and result in a high degree of redundancy. The objective of this thesis is to build an interoperable Building Information Model (BIM) for the Base-Build and Tool Installation in a semiconductor manufacturing facility. It examines existing processes and data exchange standards available to facilitate the implementation of BIM and provides a framework for the development of processes and standards that can help in building an intelligent information model for a semiconductor manufacturing facility. To understand the nature of the flow of information between the various stakeholders the flow of information between the facility designer, process tool manufacturer and tool layout designer is examined. An information model for the base build and process tool is built and the industry standards SEMI E6 and SEMI E51 are used as a basis to model the information. It is found that applications used to create information models support interoperable industry standard formats such as the Industry Foundation Classes (IFC) and ISO 15926 in a limited manner. A gap analysis has revealed that interoperability standards applicable to the semiconductor manufacturing industry such as the IFC and ISO15926 need to be expanded to support information transfers unique to the industry. Information modeling for a semiconductor manufacturing facility is unique in that it is a process model (Process Tool Information Model) within a building model (Building Information Model), each of them supported more robustly by different interoperability standards. Applications support interoperability data standards specific to the domain or industry they serve but information transfers need to occur between the various domains. To facilitate flow of information between the different domains it is recommended that a mapping of the industry standards be undertaken and translators between them be developed for business use.
ContributorsPindukuri, Shruthi (Author) / Chasey, Allan D (Thesis advisor) / Wiezel, Avi (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2011
150085-Thumbnail Image.png
Description
The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning

The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning software. It also allowed evaluation of the effect of individual coordination within the crew on the crew's productivity. Using design information, a list of micro-activities/tasks and their predecessors was automatically generated for each piece of lumber in the four wood frames. The task precedence was generated by applying elementary geometrical and technological reasoning to each frame. Then, the duration of each task was determined based on observations from videotaped activities. Primavera's (P6) resource leveling rules were used to calculate the sequencing of tasks and the minimum duration of the whole activity for various crew sizes. The results showed quick convergence towards the minimum production time and allowed to use information from Building Information Models (BIM) to automatically establish the optimal crew sizes for frames. Late Start (LS) leveling priority rule gave the shortest duration in every case. However, the logic of LS tasks rule is too complex to be conveyed to the framing crew. Therefore, the new mental framework of a well performing framer was developed and tested to ensure high coordination. This mental framework, based on five simple rules, can be easily taught to the crew and ensures a crew productivity congruent with the one provided by the LS logic. The case studies indicate that once the worst framer in the crew surpasses the limit of 11% deviation from applying the said five rules, every additional percent of deviation reduces the productivity of the whole crew by about 4%.
ContributorsMaghiar, Marcel M (Author) / Wiezel, Avi (Thesis advisor) / Mitropoulos, Panagiotis (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2011
134261-Thumbnail Image.png
Description
Building information modeling (BIM) has already sparked changes in design and construction practices, ranging from new methods to coordinate work during design to supporting paperless construction sites where crews use handheld devices in lieu of paper plans. It is seen as the starting point for the larger picture, virtual design

Building information modeling (BIM) has already sparked changes in design and construction practices, ranging from new methods to coordinate work during design to supporting paperless construction sites where crews use handheld devices in lieu of paper plans. It is seen as the starting point for the larger picture, virtual design and construction (VDC). While some research has explored the feasibility of using BIM for Facilities Management (FM) this practice is yet to become widely accepted and integrated. This paper explores how VDC could improve the operations of a Facilities Management department at a large state university. Specifically, the authors examine the degree to which institutional requirements foster BIM use during building operations, the ability of models to interface with existing FM software, and the willingness of FM executives to incorporate BIM into their processes. The authors also discuss the sorts of information contained in building models that FM could find most useful, and highlight those pieces of information required for FM that many building models do not contain. Finally, the paper closes with a set of recommendations about how to create building models that more seamlessly integrate into existing Facilities Management processes at the university studied, in order to draw a set of recommendations that may apply more broadly to state universities and similar institutions.
ContributorsHebel, Natasha Faith (Author) / Parrish, Kristen (Thesis director) / Ayer, Steven (Committee member) / Del E. Webb School of Construction (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
ContributorsEvans, Bartlett R. (Conductor) / Schildkret, David (Conductor) / Glenn, Erica (Conductor) / Concert Choir (Performer) / Chamber Singers (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-16
155645-Thumbnail Image.png
Description
This research focuses on assessing the impact of various process mapping activities aimed at improving students' abilities to plan for Building Information Modeling (BIM). During the various educational activities, students were tasked with generating process maps to illustrate plans for hypothetical construction projects. Several different educational approaches for developing process

This research focuses on assessing the impact of various process mapping activities aimed at improving students' abilities to plan for Building Information Modeling (BIM). During the various educational activities, students were tasked with generating process maps to illustrate plans for hypothetical construction projects. Several different educational approaches for developing process maps were used, beginning in the Fall 2015 semester. In all iterations of the learning activity, students were asked to create level 1 (project-specific) and level 2 (BIM use-specific) process maps based on a previously published BIM Project Execution Planning Guide. In Fall 2015, a peer review activity was conducted. In Spring 2016, a collaborative activity was conducted. Beginning in the Fall 2016 and Spring 2017 semesters, an additional process mapping activity was conducted aimed at separating process mapping and BIM planning into separate activities. In Fall 2016, the BIM activity was conducted in groups of three whereas in Spring 2017, the students were asked to create individual process maps for the given BIM use. To understand the impact of the activity on students' perception of their own knowledge, a pre-and post-activity questionnaire was developed. It covered questions related to: (i) students' ability to create a process map, (ii) students' perception about the importance of a process map and (iii) students' perception about their own knowledge of the BIM execution process. The process maps were analyzed using a grading rubric developed by the author. The grading rubric is the major contribution of the work as there is no existing rubric to assess a BIM process map. The grading rubric divides each process map into five sections, including: core activity; activities preceding the core activity; activities following the core activity; loop/iteration; and communication across the swim lanes. The rubric consist of two parts that evaluate (i) the ability of students to demonstrate each section and (ii) the quality of demonstration of each section. The author conducted an inter-rater reliability index to validate the rubric. This inter-rater reliability index compares the scores students’ process maps were when assessed by graduate students, faculty, and industry practitioners. The reviewers graded the same set of twelve process maps. The inter-rater reliability index was found to be 0.21, which indicates a fair agreement between the graders. The non-BIM activity approach was perceived as the most impactful approach by the students. The assessment of the process maps with the rubric indicated that the non-BIM approach was the most impactful approach for enabling students to demonstrate their ability to create a process map.
ContributorsPerikamana, Aparna (Author) / Ayer, Steven K (Thesis advisor) / Chasey, Allan D (Committee member) / Parrish, Kristen D (Committee member) / Arizona State University (Publisher)
Created2017
ContributorsOwen, Ken (Conductor) / McDevitt, Mandy L. M. (Performer) / Larson, Brook (Conductor) / Wang, Lin-Yu (Performer) / Jacobs, Todd (Performer) / Morehouse, Daniel (Performer) / Magers, Kristen (Performer) / DeGrow, Gary (Performer) / DeGrow, Richard (Performer) / Women's Chorus (Performer) / Sun Devil Singers (Performer) / ASU Library. Music Library (Publisher)
Created2004-03-24
ContributorsMetz, John (Performer) / Sowers, Richard (Performer) / Collegium Musicum (Performer) / ASU Library. Music Library (Publisher)
Created1983-01-29
ContributorsEvans, Bartlett R. (Conductor) / Glenn, Erica (Conductor) / Steiner, Kieran (Conductor) / Thompson, Jason D. (Conductor) / Arizona Statesmen (Performer) / Women's Chorus (Performer) / Concert Choir (Performer) / Gospel Choir (Conductor) / ASU Library. Music Library (Publisher)
Created2019-03-15
ContributorsKillian, George W. (Performer) / Killian, Joni (Performer) / Vocal Jazz Ensemble (Performer) / ASU Library. Music Library (Publisher)
Created1992-11-05
ContributorsButler, Robb (Conductor) / McCreary, Kimilee (Conductor) / Bakko, Nicki L. (Conductor) / Schreuder, Joel (Conductor) / Larson, Matthew (Performer) / Ortman, Mory (Performer) / Graduate Chorale I (Performer) / Graduate Chorale II (Performer) / ASU Library. Music Library (Publisher)
Created1999-12-02