Matching Items (20)
Filtering by

Clear all filters

150244-Thumbnail Image.png
Description
A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment

A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment challenging, including the massive amounts of data available, large numbers of users, and a highly dynamic environment, provide unique and untapped opportunities for solving the provenance problem for social media. Current approaches for tracking provenance data do not scale for online social media and consequently there is a gap in provenance methodologies and technologies providing exciting research opportunities. The guiding vision is the use of social media information itself to realize a useful amount of provenance data for information in social media. This departs from traditional approaches for data provenance which rely on a central store of provenance information. The contemporary online social media environment is an enormous and constantly updated "central store" that can be mined for provenance information that is not readily made available to the average social media user. This research introduces an approach and builds a foundation aimed at realizing a provenance data capability for social media users that is not accessible today.
ContributorsBarbier, Geoffrey P (Author) / Liu, Huan (Thesis advisor) / Bell, Herbert (Committee member) / Li, Baoxin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
150158-Thumbnail Image.png
Description
Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering

Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.
ContributorsSun, Liang (Author) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Liu, Huan (Committee member) / Mittelmann, Hans D. (Committee member) / Arizona State University (Publisher)
Created2011
150190-Thumbnail Image.png
Description
Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant information from the irrelevant information has been a topic of

Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant information from the irrelevant information has been a topic of focus. In supervised learning like regression, the data consists of many features and only a subset of the features may be responsible for the result. Also, the features might require special structural requirements, which introduces additional complexity for feature selection. The sparse learning package, provides a set of algorithms for learning a sparse set of the most relevant features for both regression and classification problems. Structural dependencies among features which introduce additional requirements are also provided as part of the package. The features may be grouped together, and there may exist hierarchies and over- lapping groups among these, and there may be requirements for selecting the most relevant groups among them. In spite of getting sparse solutions, the solutions are not guaranteed to be robust. For the selection to be robust, there are certain techniques which provide theoretical justification of why certain features are selected. The stability selection, is a method for feature selection which allows the use of existing sparse learning methods to select the stable set of features for a given training sample. This is done by assigning probabilities for the features: by sub-sampling the training data and using a specific sparse learning technique to learn the relevant features, and repeating this a large number of times, and counting the probability as the number of times a feature is selected. Cross-validation which is used to determine the best parameter value over a range of values, further allows to select the best parameter value. This is done by selecting the parameter value which gives the maximum accuracy score. With such a combination of algorithms, with good convergence guarantees, stable feature selection properties and the inclusion of various structural dependencies among features, the sparse learning package will be a powerful tool for machine learning research. Modular structure, C implementation, ATLAS integration for fast linear algebraic subroutines, make it one of the best tool for a large sparse setting. The varied collection of algorithms, support for group sparsity, batch algorithms, are a few of the notable functionality of the SLEP package, and these features can be used in a variety of fields to infer relevant elements. The Alzheimer Disease(AD) is a neurodegenerative disease, which gradually leads to dementia. The SLEP package is used for feature selection for getting the most relevant biomarkers from the available AD dataset, and the results show that, indeed, only a subset of the features are required to gain valuable insights.
ContributorsThulasiram, Ramesh (Author) / Ye, Jieping (Thesis advisor) / Xue, Guoliang (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
151517-Thumbnail Image.png
Description
Data mining is increasing in importance in solving a variety of industry problems. Our initiative involves the estimation of resource requirements by skill set for future projects by mining and analyzing actual resource consumption data from past projects in the semiconductor industry. To achieve this goal we face difficulties like

Data mining is increasing in importance in solving a variety of industry problems. Our initiative involves the estimation of resource requirements by skill set for future projects by mining and analyzing actual resource consumption data from past projects in the semiconductor industry. To achieve this goal we face difficulties like data with relevant consumption information but stored in different format and insufficient data about project attributes to interpret consumption data. Our first goal is to clean the historical data and organize it into meaningful structures for analysis. Once the preprocessing on data is completed, different data mining techniques like clustering is applied to find projects which involve resources of similar skillsets and which involve similar complexities and size. This results in "resource utilization templates" for groups of related projects from a resource consumption perspective. Then project characteristics are identified which generate this diversity in headcounts and skillsets. These characteristics are not currently contained in the data base and are elicited from the managers of historical projects. This represents an opportunity to improve the usefulness of the data collection system for the future. The ultimate goal is to match the product technical features with the resource requirement for projects in the past as a model to forecast resource requirements by skill set for future projects. The forecasting model is developed using linear regression with cross validation of the training data as the past project execution are relatively few in number. Acceptable levels of forecast accuracy are achieved relative to human experts' results and the tool is applied to forecast some future projects' resource demand.
ContributorsBhattacharya, Indrani (Author) / Sen, Arunabha (Thesis advisor) / Kempf, Karl G. (Thesis advisor) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2013
151587-Thumbnail Image.png
Description
The rapid growth in the high-throughput technologies last few decades makes the manual processing of the generated data to be impracticable. Even worse, the machine learning and data mining techniques seemed to be paralyzed against these massive datasets. High-dimensionality is one of the most common challenges for machine learning and

The rapid growth in the high-throughput technologies last few decades makes the manual processing of the generated data to be impracticable. Even worse, the machine learning and data mining techniques seemed to be paralyzed against these massive datasets. High-dimensionality is one of the most common challenges for machine learning and data mining tasks. Feature selection aims to reduce dimensionality by selecting a small subset of the features that perform at least as good as the full feature set. Generally, the learning performance, e.g. classification accuracy, and algorithm complexity are used to measure the quality of the algorithm. Recently, the stability of feature selection algorithms has gained an increasing attention as a new indicator due to the necessity to select similar subsets of features each time when the algorithm is run on the same dataset even in the presence of a small amount of perturbation. In order to cure the selection stability issue, we should understand the cause of instability first. In this dissertation, we will investigate the causes of instability in high-dimensional datasets using well-known feature selection algorithms. As a result, we found that the stability mostly data-dependent. According to these findings, we propose a framework to improve selection stability by solving these main causes. In particular, we found that data noise greatly impacts the stability and the learning performance as well. So, we proposed to reduce it in order to improve both selection stability and learning performance. However, current noise reduction approaches are not able to distinguish between data noise and variation in samples from different classes. For this reason, we overcome this limitation by using Supervised noise reduction via Low Rank Matrix Approximation, SLRMA for short. The proposed framework has proved to be successful on different types of datasets with high-dimensionality, such as microarrays and images datasets. However, this framework cannot handle unlabeled, hence, we propose Local SVD to overcome this limitation.
ContributorsAlelyani, Salem (Author) / Liu, Huan (Thesis advisor) / Xue, Guoliang (Committee member) / Ye, Jieping (Committee member) / Zhao, Zheng (Committee member) / Arizona State University (Publisher)
Created2013
150537-Thumbnail Image.png
Description
The field of Data Mining is widely recognized and accepted for its applications in many business problems to guide decision-making processes based on data. However, in recent times, the scope of these problems has swollen and the methods are under scrutiny for applicability and relevance to real-world circumstances. At the

The field of Data Mining is widely recognized and accepted for its applications in many business problems to guide decision-making processes based on data. However, in recent times, the scope of these problems has swollen and the methods are under scrutiny for applicability and relevance to real-world circumstances. At the crossroads of innovation and standards, it is important to examine and understand whether the current theoretical methods for industrial applications (which include KDD, SEMMA and CRISP-DM) encompass all possible scenarios that could arise in practical situations. Do the methods require changes or enhancements? As part of the thesis I study the current methods and delineate the ideas of these methods and illuminate their shortcomings which posed challenges during practical implementation. Based on the experiments conducted and the research carried out, I propose an approach which illustrates the business problems with higher accuracy and provides a broader view of the process. It is then applied to different case studies highlighting the different aspects to this approach.
ContributorsAnand, Aneeth (Author) / Liu, Huan (Thesis advisor) / Kempf, Karl G. (Thesis advisor) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
162017-Thumbnail Image.png
Description
Data mining, also known as big data analysis, has been identified as a critical and challenging process for a variety of applications in real-world problems. Numerous datasets are collected and generated every day to store the information. The rise in the number of data volumes and data modality has resulted

Data mining, also known as big data analysis, has been identified as a critical and challenging process for a variety of applications in real-world problems. Numerous datasets are collected and generated every day to store the information. The rise in the number of data volumes and data modality has resulted in the increased demand for data mining methods and strategies of finding anomalies, patterns, and correlations within large data sets to predict outcomes. Effective machine learning methods are widely adapted to build the data mining pipeline for various purposes like business understanding, data understanding, data preparation, modeling, evaluation, and deployment. The major challenges for effectively and efficiently mining big data include (1) data heterogeneity and (2) missing data. Heterogeneity is the natural characteristic of big data, as the data is typically collected from different sources with diverse formats. The missing value is the most common issue faced by the heterogeneous data analysis, which resulted from variety of factors including the data collecting processing, user initiatives, erroneous data entries, and so on. In response to these challenges, in this thesis, three main research directions with application scenarios have been investigated: (1) Mining and Formulating Heterogeneous Data, (2) missing value imputation strategy in various application scenarios in both offline and online manner, and (3) missing value imputation for multi-modality data. Multiple strategies with theoretical analysis are presented, and the evaluation of the effectiveness of the proposed algorithms compared with state-of-the-art methods is discussed.
Contributorsliu, Xu (Author) / He, Jingrui (Thesis advisor) / Xue, Guoliang (Thesis advisor) / Li, Baoxin (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2021
157057-Thumbnail Image.png
Description
The pervasive use of social media gives it a crucial role in helping the public perceive reliable information. Meanwhile, the openness and timeliness of social networking sites also allow for the rapid creation and dissemination of misinformation. It becomes increasingly difficult for online users to find accurate and trustworthy information.

The pervasive use of social media gives it a crucial role in helping the public perceive reliable information. Meanwhile, the openness and timeliness of social networking sites also allow for the rapid creation and dissemination of misinformation. It becomes increasingly difficult for online users to find accurate and trustworthy information. As witnessed in recent incidents of misinformation, it escalates quickly and can impact social media users with undesirable consequences and wreak havoc instantaneously. Different from some existing research in psychology and social sciences about misinformation, social media platforms pose unprecedented challenges for misinformation detection. First, intentional spreaders of misinformation will actively disguise themselves. Second, content of misinformation may be manipulated to avoid being detected, while abundant contextual information may play a vital role in detecting it. Third, not only accuracy, earliness of a detection method is also important in containing misinformation from being viral. Fourth, social media platforms have been used as a fundamental data source for various disciplines, and these research may have been conducted in the presence of misinformation. To tackle the challenges, we focus on developing machine learning algorithms that are robust to adversarial manipulation and data scarcity.

The main objective of this dissertation is to provide a systematic study of misinformation detection in social media. To tackle the challenges of adversarial attacks, I propose adaptive detection algorithms to deal with the active manipulations of misinformation spreaders via content and networks. To facilitate content-based approaches, I analyze the contextual data of misinformation and propose to incorporate the specific contextual patterns of misinformation into a principled detection framework. Considering its rapidly growing nature, I study how misinformation can be detected at an early stage. In particular, I focus on the challenge of data scarcity and propose a novel framework to enable historical data to be utilized for emerging incidents that are seemingly irrelevant. With misinformation being viral, applications that rely on social media data face the challenge of corrupted data. To this end, I present robust statistical relational learning and personalization algorithms to minimize the negative effect of misinformation.
ContributorsWu, Liang (Author) / Liu, Huan (Thesis advisor) / Tong, Hanghang (Committee member) / Doupe, Adam (Committee member) / Davison, Brian D. (Committee member) / Arizona State University (Publisher)
Created2019
154816-Thumbnail Image.png
Description
Online health forums provide a convenient channel for patients, caregivers, and medical professionals to share their experience, support and encourage each other, and form health communities. The fast growing content in health forums provides a large repository for people to seek valuable information. A forum user can issue a keyword

Online health forums provide a convenient channel for patients, caregivers, and medical professionals to share their experience, support and encourage each other, and form health communities. The fast growing content in health forums provides a large repository for people to seek valuable information. A forum user can issue a keyword query to search health forums regarding to some specific questions, e.g., what treatments are effective for a disease symptom? A medical researcher can discover medical knowledge in a timely and large-scale fashion by automatically aggregating the latest evidences emerging in health forums.

This dissertation studies how to effectively discover information in health forums. Several challenges have been identified. First, the existing work relies on the syntactic information unit, such as a sentence, a post, or a thread, to bind different pieces of information in a forum. However, most of information discovery tasks should be based on the semantic information unit, a patient. For instance, given a keyword query that involves the relationship between a treatment and side effects, it is expected that the matched keywords refer to the same patient. In this work, patient-centered mining is proposed to mine patient semantic information units. In a patient information unit, the health information, such as diseases, symptoms, treatments, effects, and etc., is connected by the corresponding patient.

Second, the information published in health forums has varying degree of quality. Some information includes patient-reported personal health experience, while others can be hearsay. In this work, a context-aware experience extraction framework is proposed to mine patient-reported personal health experience, which can be used for evidence-based knowledge discovery or finding patients with similar experience.

At last, the proposed patient-centered and experience-aware mining framework is used to build a patient health information database for effectively discovering adverse drug reactions (ADRs) from health forums. ADRs have become a serious health problem and even a leading cause of death in the United States. Health forums provide valuable evidences in a large scale and in a timely fashion through the active participation of patients, caregivers, and doctors. Empirical evaluation shows the effectiveness of the proposed approach.
ContributorsLiu, Yunzhong (Author) / Chen, Yi (Thesis advisor) / Liu, Huan (Thesis advisor) / Li, Baoxin (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2016
155030-Thumbnail Image.png
Description
The dawn of Internet of Things (IoT) has opened the opportunity for mainstream adoption of machine learning analytics. However, most research in machine learning has focused on discovery of new algorithms or fine-tuning the performance of existing algorithms. Little exists on the process of taking an algorithm from the lab-environment

The dawn of Internet of Things (IoT) has opened the opportunity for mainstream adoption of machine learning analytics. However, most research in machine learning has focused on discovery of new algorithms or fine-tuning the performance of existing algorithms. Little exists on the process of taking an algorithm from the lab-environment into the real-world, culminating in sustained value. Real-world applications are typically characterized by dynamic non-stationary systems with requirements around feasibility, stability and maintainability. Not much has been done to establish standards around the unique analytics demands of real-world scenarios.

This research explores the problem of the why so few of the published algorithms enter production and furthermore, fewer end up generating sustained value. The dissertation proposes a ‘Design for Deployment’ (DFD) framework to successfully build machine learning analytics so they can be deployed to generate sustained value. The framework emphasizes and elaborates the often neglected but immensely important latter steps of an analytics process: ‘Evaluation’ and ‘Deployment’. A representative evaluation framework is proposed that incorporates the temporal-shifts and dynamism of real-world scenarios. Additionally, the recommended infrastructure allows analytics projects to pivot rapidly when a particular venture does not materialize. Deployment needs and apprehensions of the industry are identified and gaps addressed through a 4-step process for sustainable deployment. Lastly, the need for analytics as a functional area (like finance and IT) is identified to maximize the return on machine-learning deployment.

The framework and process is demonstrated in semiconductor manufacturing – it is highly complex process involving hundreds of optical, electrical, chemical, mechanical, thermal, electrochemical and software processes which makes it a highly dynamic non-stationary system. Due to the 24/7 uptime requirements in manufacturing, high-reliability and fail-safe are a must. Moreover, the ever growing volumes mean that the system must be highly scalable. Lastly, due to the high cost of change, sustained value proposition is a must for any proposed changes. Hence the context is ideal to explore the issues involved. The enterprise use-cases are used to demonstrate the robustness of the framework in addressing challenges encountered in the end-to-end process of productizing machine learning analytics in dynamic read-world scenarios.
ContributorsShahapurkar, Som (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Ameresh, Ashish (Committee member) / He, Jingrui (Committee member) / Tuv, Eugene (Committee member) / Arizona State University (Publisher)
Created2016