Matching Items (3)
Filtering by

Clear all filters

136588-Thumbnail Image.png
Description
Healthcare systems and health insurance are both concepts implemented in every country to provide access to the general population. Countries undergo healthcare reforms in order to increase the performance of the system. In 2010, the Affordable Care Act (ACA) was introduced in the United States to increase coverage and create

Healthcare systems and health insurance are both concepts implemented in every country to provide access to the general population. Countries undergo healthcare reforms in order to increase the performance of the system. In 2010, the Affordable Care Act (ACA) was introduced in the United States to increase coverage and create a more inclusive health insurance market. For comparison, the recent reforms in Chile and Singapore were observed as points to determine what concepts work well and what can be implemented in the U.S. system. Unlike the United States, Chile and Singapore completely altered the system that was previously in use. In Chile, the reforms began in the 1970s and made two more major changes in 1973 and early 2000s. Singapore began its reform in the 1960s and created the medical savings account system that is still in use today. To analyze the system further, the medical professions of neurology, physician assistants and optometry were compared in each country. In regards to neurology, the coverage of services in Chile and Singapore are similar in that select medical procedures are covered. In contrast, the United States offers coverage on a case-by-case basis. For physician assistants, such a profession does not exist in Chile or Singapore. In the United States, the profession is rapidly expanding, and coverage is offered for most services provided. Optometry is a stand-alone profession in both the U.S. and Singapore. The services provided by the optometrists are selectively covered by insurance, depending on whether it is considered a medical problem. Chile covers the services often provided by optometrists, however, the ophthalmologist is the provider, as optometry does not exist. This study concluded that the U.S. should continue to provide a more inclusive healthcare system that includes vision and dental care. The U.S., like Singapore, should also adopt a more integrative system. Under this system, patient care would be provided in a way that professionals specializing in the care are included in every step of the process.
ContributorsLa, Jenny (Co-author) / Feruj, Farihah (Co-author) / Morrison, Sarah (Co-author) / Gaughan, Monica (Thesis director) / Essary, Alison (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
134627-Thumbnail Image.png
Description
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the deterioration of motor neurons. ALS affects about 1 in 20,000 people and leads to death within 2 to 5 years after diagnosis. There is currently no cure for ALS, but there are many genes known to be associated

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the deterioration of motor neurons. ALS affects about 1 in 20,000 people and leads to death within 2 to 5 years after diagnosis. There is currently no cure for ALS, but there are many genes known to be associated with ALS, such as SOD 1 and C9orf72. Recently, mutations in Matrin 3 were linked to ALS. While 15 mutations in Matrin 3 have been discovered, this study focuses on the four initial mutations, which are the Ser85Cys, Phe115Cys, Pro154Ser, and Thr622Ala mutations. This study attempts to understand the mechanism of how these mutations lead to ALS. The first aim focuses on the role of Matrin mutations in the mislocalization of TDP-43 from the nucleus to the cytoplasm, a pathological hallmark of ALS. We hypothesized expression of mutant Matrin 3 would lead to TDP-43 mislocalization, however the data did not support that hypothesis. The second aim of this study focuses on the mislocalization of TRanscription EXport (TREX) complex proteins within the nucleus. TREX proteins were studied based off of previous experiments suggesting that proteins within this complex bind to Matrin 3. The results showed differences in co-localization between each of these proteins and wild-type and mutant Matrin 3, confirming our earlier results. These findings can help increase our understanding of the mechanism of ALS while also setting the framework for future studies.
ContributorsSingh, Gurkaran (Author) / Bowser, Robert (Thesis director) / Newbern, Jason (Committee member) / Boehringer, Ashley (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Medulloblastoma is the most common pediatric brain cancer and accounts for 20% of all pediatric brain tumors. Upon diagnosis, patients undergo tumor-resection surgery followed by intense chemotherapy and cerebrospinal irradiation (CSI) regimens. CSI therapy is highly toxic and poorly tolerated in pediatric patients and is known to cause long-term neurocognitive,

Medulloblastoma is the most common pediatric brain cancer and accounts for 20% of all pediatric brain tumors. Upon diagnosis, patients undergo tumor-resection surgery followed by intense chemotherapy and cerebrospinal irradiation (CSI) regimens. CSI therapy is highly toxic and poorly tolerated in pediatric patients and is known to cause long-term neurocognitive, endocrine, and developmental deficits that often diminish the quality of life for medulloblastoma patients. The development of targeted therapies is necessary for both increasing the chance of survival and reducing treatment-related morbidities. A potential therapeutic target of interest in medulloblastoma is the polyamine biosynthesis pathway. Polyamines are metabolites present in every living organism and are essential for cellular processes such as growth, survival, and differentiation. Recent studies have shown that polyamine production is dysregulated in several cancers, including brain cancers, and have highlighted polyamine biosynthesis as a potential cancer growth dependency. Dysregulated polyamine metabolism has also been linked to several oncogenic drivers, including the WNT, SHH, and MYC signaling pathways that characterize genetically distinct medulloblastoma subgroups. One way to target polyamine biosynthesis is through the inhibition of the rate-limiting enzyme ornithine decarboxylase with difluoromethylornithine (DFMO), an analog of the polyamine precursor ornithine. DFMO is well-tolerated in pediatric populations and exerts minimal toxicities, as shown through neuroblastoma clinical trials, and is a therapy of interest for medulloblastoma. While DFMO has been tested clinically in multiple cancers, few in vitro studies have been performed to understand the exact mechanisms of anti-proliferation and cytotoxicity. Our study screened two immortalized medulloblastoma cell lines, DAOY (SHH) and D283 (non-WNT/non-SHH), and three patient-derived medulloblastoma cell lines, SL00024 (SHH), SL00668 (non-WNT/non-SHH), SL00870 (Unknown subgroup), for DFMO sensitivity and profiled the immortalized medulloblastoma cell line metabolome to understand the interactions between inhibition of polyamine metabolism with other essential metabolic processes and tumor cell growth. We found that medulloblastoma cell lines are sensitive to DFMO and the adaptive response to DFMO in medulloblastoma may be caused by increased oxidative stress and free radical scavenging. Our study hopes to inform the use of DFMO as an anti-cancer therapy in medulloblastoma by understanding the drug’s single-agent anti-proliferative mechanisms.
ContributorsFain, Caitlyn (Author) / Buetow, Kenneth (Thesis director) / Pirrotte, Patrick (Committee member) / Pathak, Khyati (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2024-05