Matching Items (2)
Filtering by

Clear all filters

133911-Thumbnail Image.png
Description
The main goal of this project is to study approximations of functions on circular and spherical domains using the cubed sphere discretization. On each subdomain, the function is approximated by windowed Fourier expansions. Of particular interest is the dependence of accuracy on the different choices of windows and the size

The main goal of this project is to study approximations of functions on circular and spherical domains using the cubed sphere discretization. On each subdomain, the function is approximated by windowed Fourier expansions. Of particular interest is the dependence of accuracy on the different choices of windows and the size of the overlapping regions. We use Matlab to manipulate each of the variables involved in these computations as well as the overall error, thus enabling us to decide which specific values produce the most accurate results. This work is motivated by problems arising in atmospheric research.
ContributorsSopa, Megan Grace (Author) / Platte, Rodrigo (Thesis director) / Kostelich, Eric (Committee member) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
154381-Thumbnail Image.png
Description
High-order methods are known for their accuracy and computational performance when applied to solving partial differential equations and have widespread use

in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI

High-order methods are known for their accuracy and computational performance when applied to solving partial differential equations and have widespread use

in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI and SAR provide data in terms of Fourier coefficients, and thus prescribe a natural high-order basis. The field of compressed sensing has introduced a set of techniques based on $\ell^1$ regularization that promote sparsity and facilitate working with functions having discontinuities. In this dissertation, high-order methods and $\ell^1$ regularization are used to address three problems: reconstructing piecewise smooth functions from sparse and and noisy Fourier data, recovering edge locations in piecewise smooth functions from sparse and noisy Fourier data, and reducing time-stepping constraints when numerically solving certain time-dependent hyperbolic partial differential equations.
ContributorsDenker, Dennis (Author) / Gelb, Anne (Thesis advisor) / Archibald, Richard (Committee member) / Armbruster, Dieter (Committee member) / Boggess, Albert (Committee member) / Platte, Rodrigo (Committee member) / Saders, Toby (Committee member) / Arizona State University (Publisher)
Created2016