Matching Items (16)
Filtering by

Clear all filters

151965-Thumbnail Image.png
Description
Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In

Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In particular, the focus was on the stable patterns of reasoning, known as ways of thinking, which students applied in a variety of combinatorial situations and tasks. This study catalogued students' ways of thinking about solution sets as they progressed through an instructional sequence. In addition, the relationships between the catalogued ways of thinking were explored. Further, the study investigated the challenges students experienced as they interacted with the tasks and instructional interventions, and how students' ways of thinking evolved as these challenges were overcome. Finally, it examined the role of instruction in guiding students to develop and extend their ways of thinking. Two pairs of undergraduate students with no formal experience with combinatorics participated in one of the two consecutive teaching experiments conducted in Spring 2012. Many ways of thinking emerged through the grounded theory analysis of the data, but only eight were identified as robust. These robust ways of thinking were classified into three categories: Subsets, Odometer, and Problem Posing. The Subsets category encompasses two ways of thinking, both of which ultimately involve envisioning the solution set as the union of subsets. The three ways of thinking in Odometer category involve holding an item or a set of items constant and systematically varying the other items involved in the counting process. The ways of thinking belonging to Problem Posing category involve spontaneously posing new, related combinatorics problems and finding relationships between the solution sets of the original and the new problem. The evolution of students' ways of thinking in the Problem Posing category was analyzed. This entailed examining the perturbation experienced by students and the resulting accommodation of their thinking. It was found that such perturbation and its resolution was often the result of an instructional intervention. Implications for teaching practice are discussed.
ContributorsHalani, Aviva (Author) / Roh, Kyeong Hah (Thesis advisor) / Fishel, Susanna (Committee member) / Saldanha, Luis (Committee member) / Thompson, Patrick (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2013
151831-Thumbnail Image.png
Description
The need for improved mathematics education in many of America's schools that serve students from low income households has been extensively documented. This practical action research study, set in a suburban Title I school with a primarily Hispanic, non-native English speaking population, is designed to explore the effects of the

The need for improved mathematics education in many of America's schools that serve students from low income households has been extensively documented. This practical action research study, set in a suburban Title I school with a primarily Hispanic, non-native English speaking population, is designed to explore the effects of the progression through a set of problem solving solution strategies on the mathematics problem solving abilities of 2nd grade students. Students worked in class with partners to complete a Cognitively Guided Instruction-style (CGI) mathematics word problem using a dictated solution strategy five days a week for twelve weeks, three or four weeks for each of four solution strategies. The phases included acting out the problem using realia, representing the problem using standard mathematics manipulatives, modeling the problem using a schematic representation, and solving the problem using a number sentence. Data were collected using a five question problem solving pre- and post-assessment, video recorded observations, and Daily Answer Recording Slips or Mathematics Problem Solving Journals. Findings showed that this problem solving innovation was effective in increasing the problem solving abilities of all participants in this study, with an average increase of 63% in the number of pre-assessment to post-assessment questions answered correctly. Additionally, students increased the complexity of solutions used to solve problems and decreased the rate of guessing at answers to word problems. Further rounds of research looking into the direct effects of the MKO are suggested as next steps of research.
ContributorsSpilde, Amy (Author) / Zambo, Ronald (Thesis advisor) / Heck, Thomas (Committee member) / Nicoloff, Stephen J. (Committee member) / Arizona State University (Publisher)
Created2013
151525-Thumbnail Image.png
Description
ABSTRACT There is a continuing emphasis in the United States to improve student's mathematical abilities and one approach is to better prepare teachers. This study investigated the effects of using lesson study with preservice secondary mathematics teachers to improve their proficiency at planning and implementing instruction. The participants were students

ABSTRACT There is a continuing emphasis in the United States to improve student's mathematical abilities and one approach is to better prepare teachers. This study investigated the effects of using lesson study with preservice secondary mathematics teachers to improve their proficiency at planning and implementing instruction. The participants were students (preservice teachers) in an undergraduate teacher preparation program at a private university who were enrolled in a mathematics methods course for secondary math teachers. This project used lesson study to engage preservice teachers in collaboratively creating lessons, field testing them, using feedback to revise the lessons, and re-teaching the revised lesson. The preservice teachers worked through multiple cycles of the process in their secondary math methods class receiving feedback from their peers and instructor prior to teaching the lessons in their field experience (practicum). A mixed methods approach was implemented to investigate the preservice teacher's abilities to plan and implement instruction as well as their efficacy for teaching. Data were collected from surveys, video analysis, student reflections, and semi-structured interviews. The findings from this study indicate that lesson study for preservice teachers was an effective means of teacher education. Lesson study positively impacted the preservice teachers' ability to plan and teach mathematical lessons more effectively. The preservice teachers successfully transitioned from teaching in the methods classroom to their field experience classroom during this innovation. Further, the efficacy of the preservice teachers to teach secondary mathematics increased based on this innovation. Further action research cycles of lesson study with preservice teachers are recommended.
ContributorsMostofo, Jameel (Author) / Zambo, Ronald (Thesis advisor) / Elliott, Sherman (Committee member) / Heck, Thomas (Committee member) / Arizona State University (Publisher)
Created2013
152954-Thumbnail Image.png
Description
ABSTRACT

The early desire for and the pursuit of literacy are often mentioned in the teeming volumes devoted to African-American history. However, stories, facts, and figures about the acquisition of numeracy by African Americans have not been equally documented.

The focus of this study was to search for the third R, this

ABSTRACT

The early desire for and the pursuit of literacy are often mentioned in the teeming volumes devoted to African-American history. However, stories, facts, and figures about the acquisition of numeracy by African Americans have not been equally documented.

The focus of this study was to search for the third R, this is the numeracy and mathematics experiences of African Americans who were born in, and before, 1933. The investigation of this generational cadre was pursued in order to develop oral histories and narratives going back to the early 1900s. This study examined formal and informal education and other relevant mathematics-related, lived experiences of unacknowledged and unheralded African Americans, as opposed to the American anomalies of African descent who are most often acknowledged, such as the Benjamin Bannekers, the George Washington Carvers, and other notables.



Quantitative and qualitative data were collected through the use of a survey and interviews. Quantitative results and qualitative findings were blended to present a nuanced perspective of African Americans learning mathematics during a period of Jim Crow, segregation, and discrimination. Their hopes, their fears, their challenges, their aspirations, their successes, and their failures are all tangential to their overall goal of seeking education, including mathematics education, in the early twentieth century. Both formal and informal experiences revealed a picture of life during those times to further enhance the literature regarding the mathematics experiences of African Americans.

Key words: Black students, historical, senior citizens, mathematics education, oral history, narrative, narrative inquiry, socio-cultural theory, Jim Crow
ContributorsLaCount, Marilyn Ruth (Author) / Zambo, Ronald (Thesis advisor) / Flores, Alfinio (Committee member) / Koblitz, Ann Hibner (Committee member) / Zambo, Debby (Committee member) / Arizona State University (Publisher)
Created2014
156865-Thumbnail Image.png
Description
This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and

This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and discuss the implications of these uses for interpreting and leveraging results to produce empirically tested learning trajectories. From my summary and analysis I develop two recommendations for the cognitive researchers developing empirically supported learning trajectories. (1) A researcher should frame his/her work, and analyze others’ work, within the researcher’s image of a broadly coherent trajectory for student learning and (2) that the field should work towards a common understanding for the meaning of a hypothetical learning trajectory.

In Paper 2 I argue that prior research in online learning has tested the impact of online courses on measures such as student retention rates, satisfaction scores, and GPA but that research is needed to describe the meanings students construct for mathematical ideas researchers have identified as critical to their success in future math courses and other STEM fields. This paper discusses the need for a new focus in studying online mathematics learning and calls for cognitive researchers to begin developing a productive methodology for examining the meanings students construct while engaged in online lessons.

Paper 3 describes the online Precalculus course intervention we designed around measurement imagery and quantitative reasoning as themes that unite topics across units. I report results relative to the meanings students developed for exponential functions and related ideas (such as percent change and growth factors) while working through lessons in the intervention. I provide a conceptual analysis guiding its design and discuss pre-test and pre-interview results, post-test and post-interview results, and observations from student behaviors while interacting with lessons. I demonstrate that the targeted meanings can be productive for students, show common unproductive meanings students possess as they enter Precalculus, highlight challenges and opportunities in teaching and learning in the online environment, and discuss needed adaptations to the intervention and future research opportunities informed by my results.
ContributorsO'Bryan, Alan Eugene (Author) / Carlson, Marilyn P (Thesis advisor) / Thompson, Patrick W (Committee member) / Milner, Fabio (Committee member) / Roh, Kyeong Hah (Committee member) / Tallman, Michael (Committee member) / Arizona State University (Publisher)
Created2018
137221-Thumbnail Image.png
Description
This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University

This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University initially identified mental actions that we conjectured were needed for constructing meaningful linear formulas. This guided the development of tasks for the sequence of clinical interviews with one high-performing precalculus student. Analysis of the interview data revealed that in instances when the subject engaged in meaning making that led to him imagining and identifying the relevant quantities and how they change together, he was able to give accurate definitions of variables and was usually able to define a formula to relate the two quantities of interest. However, we found that the student sometimes had difficulty imagining how the two quantities of interest were changing together. At other times he exhibited a weak understanding of the operation of subtraction and the idea of constant rate of change. He did not appear to conceptualize subtraction as a quantitative comparison. His inability to conceptualize a constant rate of change as a proportional relationship between the changes in two quantities also presented an obstacle in his developing a meaningful formula that relied on this understanding. The results further stress the need to develop a student's ability to engage in mental operations that involve covarying quantities and a more robust understanding of constant rate of change since these abilities and understanding are critical for student success in future courses in mathematics.
ContributorsKlinger, Tana Paige (Author) / Carlson, Marilyn (Thesis director) / Thompson, Pat (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
155768-Thumbnail Image.png
Description
Researchers have documented the importance of seeing a graph as an emergent trace of how two quantities’ values vary simultaneously in order to reason about the graph in terms of quantitative relationships. If a student does not see a graph as a representation of how quantities change together then the

Researchers have documented the importance of seeing a graph as an emergent trace of how two quantities’ values vary simultaneously in order to reason about the graph in terms of quantitative relationships. If a student does not see a graph as a representation of how quantities change together then the student is limited to reasoning about perceptual features of the shape of the graph.

This dissertation reports results of an investigation into the ways of thinking that support and inhibit students from constructing and reasoning about graphs in terms of covarying quantities. I collected data by engaging three university precalculus students in asynchronous teaching experiments. I designed the instructional sequence to support students in making three constructions: first imagine representing quantities’ magnitudes along the axes, then simultaneously represent these magnitudes with a correspondence point in the plane, and finally anticipate tracking the correspondence point to track how the two quantities’ attributes change simultaneously.

Findings from this investigation provide insights into how students come to engage in covariational reasoning and re-present their imagery in their graphing actions. The data presented here suggests that it is nontrivial for students to coordinate their images of two varying quantities. This is significant because without a way to coordinate two quantities’ variation the student is limited to engaging in static shape thinking.

I describe three types of imagery: a correspondence point, Tinker Bell and her pixie dust, and an actor taking baby steps, that supported students in developing ways to coordinate quantities’ variation. I discuss the figurative aspects of the students’ coordination in order to account for the difficulties students had (1) constructing a multiplicative object that persisted under variation, (2) reconstructing their acts of covariation in other graphing tasks, and (3) generalizing these acts of covariation to reason about formulas in terms of covarying quantities.
ContributorsFrank, Kristin Marianna (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn P (Thesis advisor) / Milner, Fabio (Committee member) / Roh, Kyeong Hah (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2017
149575-Thumbnail Image.png
Description
In any instructional situation, the instructor's goal is to maximize the learning attained by students. Drawing on the adage, 'we learn best what we have taught,' this action research project was conducted to examine whether students, in fact, learned college algebra material better if they taught it to their peers.

In any instructional situation, the instructor's goal is to maximize the learning attained by students. Drawing on the adage, 'we learn best what we have taught,' this action research project was conducted to examine whether students, in fact, learned college algebra material better if they taught it to their peers. The teaching-to-learn process was conducted in the following way. The instructor-researcher met with individual students and taught a college algebra topic to a student who served as the leader of a group of four students. At the next step, the student who originally learned the material from the instructor met with three other students in a small group session and taught the material to them to prepare an in-class presentation. Students in these small group sessions discussed how best to present the material, anticipated questions, and prepared a presentation to be shared with their classmates. The small group then taught the material to classmates during an in-class review session prior to unit examinations. Quantitative and qualitative data were gathered. Quantitative data consisted of pre- and post-test scores on four college algebra unit examinations. In addition, scores from Likert-scale items on an end-of-semester questionnaire that assessed the effectiveness of the teaching-to-learn process and attitudes toward the process were obtained. Qualitative data consisted of field notes from observations of selected small group sessions and in-class presentations. Additional qualitative data included responses to open-ended questions on the end-of-semester questionnaire and responses to interview items posed to groups of students. Results showed the quantitative data did not support the hypothesis that material, which was taught, was better learned than other material. Nevertheless, qualitative data indicated students were engaged in the material, had a deeper understanding of the material, and were more confident about it as a result of their participation in the teaching-to-learn process. Students also viewed the teaching-to-learn process as being effective and they had positive attitudes toward the teaching-to-learn process. Discussion focused on how engagement, deeper understanding and confidence interacted with one another to increase student learning. Lessons learned, implications for practice, and implications for further action research were also discussed.
ContributorsNicoloff, Stephen J (Author) / Buss, Ray R (Thesis advisor) / Zambo, Ronald (Committee member) / Shaw, Phyllis J (Committee member) / Arizona State University (Publisher)
Created2011
189254-Thumbnail Image.png
Description
Authors of calculus texts often include graphs in the text with the intent that the graph depicts relationships described in theorems and formulas. Similarly, graphs are often utilized in classroom lectures and discussions for the same purpose. The author or instructor includes function graphs to represent quantitative relationships and how

Authors of calculus texts often include graphs in the text with the intent that the graph depicts relationships described in theorems and formulas. Similarly, graphs are often utilized in classroom lectures and discussions for the same purpose. The author or instructor includes function graphs to represent quantitative relationships and how a pair of quantities vary. Previous research has shown that different students interpret calculus statements differently depending on their meanings of points in the coordinate plane. As a result, students' widely differing interpretations of graphs presented to them. Researchers studying how students understand graphs of continuous functions and coordinate planes have developed many constructs to explain potential aspects of students' thinking about coordinate points, coordinate planes, variation, covariation, and continuous functions. No current research investigates how the different ways of thinking about graphs correlate. In other words, are there some ways of thinking that tend to either occur together or not occur together? In this research, I investigated student's system of meanings to describe how the different ways of understanding coordinate planes, coordinate points, and graphs of functions in the coordinate planes are related in students’ thinking. I determine a relationship between students' understanding of number lines or coordinate planes containing an infinite collection of numbers and their ability to identify a graph representing a dynamic situation. Additionally, I determined a relationship between students reasoning with values (instead of shapes) and their ability to create a graph to represent a dynamic situation.
ContributorsVillatoro, Barbara (Author) / Thompson, Patrick (Thesis advisor) / Carlson, Marilyn (Committee member) / Moore, Kevin (Committee member) / Roh, Kyeong Hah (Committee member) / Draney, Karen (Committee member) / Arizona State University (Publisher)
Created2023
189302-Thumbnail Image.png
Description
Over the last several centuries, mathematicians have developed sophisticated symbol systems to represent ideas often imperceptible to their five senses. Although conventional definitions exist for these notations, individuals attribute their personalized meanings to these symbols during their mathematical activities. In some instances, students might (1) attribute a non-normative meaning to

Over the last several centuries, mathematicians have developed sophisticated symbol systems to represent ideas often imperceptible to their five senses. Although conventional definitions exist for these notations, individuals attribute their personalized meanings to these symbols during their mathematical activities. In some instances, students might (1) attribute a non-normative meaning to a conventional symbol or (2) attribute viable meanings for a mathematical topic to a novel symbol. This dissertation aims to investigate the relationships between students’ meanings and personal algebraic expressions in the context of one topic: infinite series convergence. To this end, I report the results of two individual constructivist teaching experiments in which first-time second-semester university calculus students constructed symbols (called personal expressions) to organize their thinking about various topics related to infinite series. My results comprise three distinct sections. First, I describe the intuitive meanings that the two students, Monica and Sylvia, exhibited for infinite series convergence before experiencing formal instruction on the topic. Second, I categorize the meanings these students attributed to their personal expressions for series topics and propose symbol categories corresponding to various instantiations of each meaning. Finally, I describe two situations in which students modified their personal expressions throughout several interviews to either (1) distinguish between examples they initially perceived as similar or (2) modify a previous personal expression to symbolize two ideas they initially perceived as distinct. To conclude, I discuss the research and teaching implications of my explanatory frameworks for students’ symbolization. I also provide an initial theoretical framing of the cognitive mechanisms by which students create, maintain, and modify their personal algebraic representations.
ContributorsEckman, Derek (Author) / Roh, Kyeong Hah (Thesis advisor) / Carlson, Marilyn (Committee member) / Martin, Jason (Committee member) / Spielberg, John (Committee member) / Zazkis, Dov (Committee member) / Arizona State University (Publisher)
Created2023