Matching Items (23)
Filtering by

Clear all filters

149801-Thumbnail Image.png
Description
This study contributes to the ongoing discussion of Mathematical Knowledge for Teaching (MKT). It investigates the case of Rico, a high school mathematics teacher who had become known to his colleagues and his students as a superbly effective mathematics teacher. His students not only developed excellent mathematical skills, they also

This study contributes to the ongoing discussion of Mathematical Knowledge for Teaching (MKT). It investigates the case of Rico, a high school mathematics teacher who had become known to his colleagues and his students as a superbly effective mathematics teacher. His students not only developed excellent mathematical skills, they also developed deep understanding of the mathematics they learned. Moreover, Rico redesigned his curricula and instruction completely so that they provided a means of support for his students to learn mathematics the way he intended. The purpose of this study was to understand the sources of Rico's effectiveness. The data for this study was generated in three phases. Phase I included videos of Rico's lessons during one semester of an Algebra II course, post-lesson reflections, and Rico's self-constructed instructional materials. An analysis of Phase I data led to Phase II, which consisted of eight extensive stimulated-reflection interviews with Rico. Phase III consisted of a conceptual analysis of the prior phases with the aim of creating models of Rico's mathematical conceptions, his conceptions of his students' mathematical understandings, and his images of instruction and instructional design. Findings revealed that Rico had developed profound personal understandings, grounded in quantitative reasoning, of the mathematics that he taught, and profound pedagogical understandings that supported these very same ways of thinking in his students. Rico's redesign was driven by three factors: (1) the particular way in which Rico himself understood the mathematics he taught, (2) his reflective awareness of those ways of thinking, and (3) his ability to envision what students might learn from different instructional approaches. Rico always considered what someone might already need to understand in order to understand "this" in the way he was thinking of it, and how understanding "this" might help students understand related ideas or methods. Rico's continual reflection on the mathematics he knew so as to make it more coherent, and his continual orientation to imagining how these meanings might work for students' learning, made Rico's mathematics become a mathematics of students--impacting how he assessed his practice and engaging him in a continual process of developing MKT.
ContributorsLage Ramírez, Ana Elisa (Author) / Thompson, Patrick W. (Thesis advisor) / Carlson, Marilyn P. (Committee member) / Castillo-Chavez, Carlos (Committee member) / Saldanha, Luis (Committee member) / Middleton, James A. (Committee member) / Arizona State University (Publisher)
Created2011
151913-Thumbnail Image.png
Description
In this mixed-methods study, I examined the relationship between professional development based on the Common Core State Standards for Mathematics and teacher knowledge, classroom practice, and student learning. Participants were randomly assigned to experimental and control groups. The 50-hour professional development treatment was administered to the treatment group during one

In this mixed-methods study, I examined the relationship between professional development based on the Common Core State Standards for Mathematics and teacher knowledge, classroom practice, and student learning. Participants were randomly assigned to experimental and control groups. The 50-hour professional development treatment was administered to the treatment group during one semester, and then a follow-up replication treatment was administered to the control group during the subsequent semester. Results revealed significant differences in teacher knowledge as a result of the treatment using two instruments. The Learning Mathematics for Teaching scales were used to detect changes in mathematical knowledge for teaching, and an online sorting task was used to detect changes in teachers' knowledge of their standards. Results also indicated differences in classroom practice between pairs of matched teachers selected to participate in classroom observations and interviews. No statistical difference was detected between the groups' student assessment scores using the district's benchmark assessment system. This efficacy study contributes to the literature in two ways. First, it provides an evidence base for a professional development model designed to promote effective implementation of the Common Core State Standards for Mathematics. Second, it addresses ways to impact and measure teachers' knowledge of curriculum in addition to their mathematical content knowledge. The treatment was designed to focus on knowledge of curriculum, but it also successfully impacted teachers' specialized content knowledge, knowledge of content and students, and knowledge of content and teaching.
ContributorsRimbey, Kimberly A (Author) / Middleton, James A. (Thesis advisor) / Sloane, Finbarr (Committee member) / Atkinson, Robert K (Committee member) / Arizona State University (Publisher)
Created2013
152018-Thumbnail Image.png
Description
The research indicated effective mathematics teaching to be more complex than assuming the best predictor of student achievement in mathematics is the mathematical content knowledge of a teacher. This dissertation took a novel approach to addressing the idea of what it means to examine how a teacher's knowledge of mathematics

The research indicated effective mathematics teaching to be more complex than assuming the best predictor of student achievement in mathematics is the mathematical content knowledge of a teacher. This dissertation took a novel approach to addressing the idea of what it means to examine how a teacher's knowledge of mathematics impacts student achievement in elementary schools. Using a multiple case study design, the researcher investigated teacher knowledge as a function of the Mathematics Teaching Cycle (NCTM, 2007). Three cases (of two teachers each) were selected using a compilation of Learning Mathematics for Teaching (LMT) measures (LMT, 2006) and Developing Mathematical Ideas (DMI) measures (Higgins, Bell, Wilson, McCoach, & Oh, 2007; Bell, Wilson, Higgins, & McCoach, 2010) and student scores on the Arizona Assessment Collaborative (AzAC). The cases included teachers with: a) high knowledge & low student achievement v low knowledge & high student achievement, b) high knowledge & average achievement v low knowledge & average achievement, c) average knowledge & high achievement v average knowledge & low achievement, d) two teachers with average achievement & very high student achievement. In the end, my data suggested that MKT was only partially utilized across the contrasting teacher cases during the planning process, the delivery of mathematics instruction, and subsequent reflection. Mathematical Knowledge for Teaching was utilized differently by teachers with high student gains than those with low student gains. Because of this insight, I also found that MKT was not uniformly predictive of student gains across my cases, nor was it predictive of the quality of instruction provided to students in these classrooms.
ContributorsBurke, Margaret Kathleen (Author) / Middleton, James A. (Thesis advisor) / Sloane, Finbarr (Thesis advisor) / Battey, Daniel S (Committee member) / Arizona State University (Publisher)
Created2013
151965-Thumbnail Image.png
Description
Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In

Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In particular, the focus was on the stable patterns of reasoning, known as ways of thinking, which students applied in a variety of combinatorial situations and tasks. This study catalogued students' ways of thinking about solution sets as they progressed through an instructional sequence. In addition, the relationships between the catalogued ways of thinking were explored. Further, the study investigated the challenges students experienced as they interacted with the tasks and instructional interventions, and how students' ways of thinking evolved as these challenges were overcome. Finally, it examined the role of instruction in guiding students to develop and extend their ways of thinking. Two pairs of undergraduate students with no formal experience with combinatorics participated in one of the two consecutive teaching experiments conducted in Spring 2012. Many ways of thinking emerged through the grounded theory analysis of the data, but only eight were identified as robust. These robust ways of thinking were classified into three categories: Subsets, Odometer, and Problem Posing. The Subsets category encompasses two ways of thinking, both of which ultimately involve envisioning the solution set as the union of subsets. The three ways of thinking in Odometer category involve holding an item or a set of items constant and systematically varying the other items involved in the counting process. The ways of thinking belonging to Problem Posing category involve spontaneously posing new, related combinatorics problems and finding relationships between the solution sets of the original and the new problem. The evolution of students' ways of thinking in the Problem Posing category was analyzed. This entailed examining the perturbation experienced by students and the resulting accommodation of their thinking. It was found that such perturbation and its resolution was often the result of an instructional intervention. Implications for teaching practice are discussed.
ContributorsHalani, Aviva (Author) / Roh, Kyeong Hah (Thesis advisor) / Fishel, Susanna (Committee member) / Saldanha, Luis (Committee member) / Thompson, Patrick (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2013
151123-Thumbnail Image.png
Description
Drawing on Lave and Wenger (1991) this study explores how preservice elementary teachers develop themselves as teachers of mathematics, in particular, from the time of their teacher education courses to their field experiences. This study also researches the critical experiences that contributed to the construction of their identities and their

Drawing on Lave and Wenger (1991) this study explores how preservice elementary teachers develop themselves as teachers of mathematics, in particular, from the time of their teacher education courses to their field experiences. This study also researches the critical experiences that contributed to the construction of their identities and their roles as student teachers in their identity development. The stories of Jackie, Meg, and Kerry show that they brought different incoming identities to the teacher education program based on their K-12 school experiences. The stories provide the evidence that student teachers' prior experience as learners of mathematics influenced their identities as teachers, especially their confidence levels in teaching mathematics. During the mathematics methods class, student teachers were provided a conceptual understanding of math content and new ways to think about math instruction. Based on student teachers' own experiences, they reconstructed their knowledge and beliefs about what it means to teach mathematics and set their goals to become the mathematics teachers they wanted to be. As they moved through the program through their student teaching periods, their identity development varied depending on the community of practice in which they participated. My study reveals that mentor relationships were critical experiences in shaping their identities as mathematics teachers and in building their initial mathematics teaching practices. Findings suggest that successful mentoring is necessary, and this generally requires sharing common goals, receiving feedback, and having opportunities to practice knowledge, skills, and identities on the part of beginning teachers. Findings from this study highlight that identities are not developed by the individual alone but by engagement with a given community of practice. This study adds to the field of teacher education research by focusing on prospective teachers' identity constructions in relation to the communities of practice, and also by emphasizing the role of mentor in preservice teachers' identity development.
ContributorsKang, Hyun Jung (Author) / Middleton, James A. (Thesis advisor) / Battey, Dan (Committee member) / Sloane, Finbarr (Committee member) / Arizona State University (Publisher)
Created2012
137221-Thumbnail Image.png
Description
This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University

This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University initially identified mental actions that we conjectured were needed for constructing meaningful linear formulas. This guided the development of tasks for the sequence of clinical interviews with one high-performing precalculus student. Analysis of the interview data revealed that in instances when the subject engaged in meaning making that led to him imagining and identifying the relevant quantities and how they change together, he was able to give accurate definitions of variables and was usually able to define a formula to relate the two quantities of interest. However, we found that the student sometimes had difficulty imagining how the two quantities of interest were changing together. At other times he exhibited a weak understanding of the operation of subtraction and the idea of constant rate of change. He did not appear to conceptualize subtraction as a quantitative comparison. His inability to conceptualize a constant rate of change as a proportional relationship between the changes in two quantities also presented an obstacle in his developing a meaningful formula that relied on this understanding. The results further stress the need to develop a student's ability to engage in mental operations that involve covarying quantities and a more robust understanding of constant rate of change since these abilities and understanding are critical for student success in future courses in mathematics.
ContributorsKlinger, Tana Paige (Author) / Carlson, Marilyn (Thesis director) / Thompson, Pat (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
157668-Thumbnail Image.png
Description
This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct

This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct of frame of reference. The first paper is a theory paper that introduces the mental actions involved in reasoning with frames of reference. The concept of frames of reference, though commonly used in mathematics and physics, is not described cognitively in any literature. The paper offers a theoretical model of mental actions involved in conceptualizing a frame of reference. Additionally, it posits mental actions that are necessary for a student to reason with multiple frames of reference. It also extends the theory of quantitative reasoning with the construct of a ‘framed quantity’. The second paper investigates how two introductory calculus students who participated in teaching experiments reasoned about changes (variations). The data was analyzed to see to what extent each student conceptualized the variations within a conceptualized frame of reference as described in the first paper. The study found that the extent to which each student conceptualized, coordinated, and combined reference frames significantly affected his ability to reason productively about variations and to make sense of his own answers. The paper ends by analyzing 123 calculus students’ written responses to one of the tasks to build hypotheses about how calculus students reason about variations within frames of reference. The third paper reports how U.S. and Korean secondary mathematics teachers reason with frame of reference on open-response items. An assessment with five frame of reference tasks was given to 539 teachers in the US and Korea, and the responses were coded with rubrics intended to categorize responses by the extent to which they demonstrated conceptualized and coordinated frames of reference. The results show that the theory in the first study is useful in analyzing teachers’ reasoning with frames of reference, and that the items and rubrics function as useful tools in investigating teachers’ meanings for quantities within a frame of reference.
ContributorsJoshua, Surani Ashanthi (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn (Committee member) / Roh, Kyeong Hah (Committee member) / Middleton, James (Committee member) / Culbertson, Robert (Committee member) / Arizona State University (Publisher)
Created2019
189214-Thumbnail Image.png
Description
This study investigated two undergraduate mathematics students’ meanings for derivatives of univariable and multivariable functions when creating linear approximations. Both participants completed multivariable calculus at least two semesters prior to participating in a sequence of four to five exploratory teaching interviews. One purpose of the interviews was to understand the

This study investigated two undergraduate mathematics students’ meanings for derivatives of univariable and multivariable functions when creating linear approximations. Both participants completed multivariable calculus at least two semesters prior to participating in a sequence of four to five exploratory teaching interviews. One purpose of the interviews was to understand the students’ meaning of the idea of rate of change and its role in their understanding ideas of derivative, partial derivative, and directional derivative. A second purpose was to understand and advance the ways in which each student used the idea of rate of change to make linear approximations. My analysis of the data revealed (i) how a student’s understanding of constant rate of change impacted their conception of derivatives, partial derivatives, and directional derivatives, and (ii) how each student used these ideas to make linear approximations. My results revealed that conceptualizing a rate of change as the ratio of two quantities’ values as they vary together was critical for their conceptualizing partial and directional derivatives quantitatively as directional rates of change, and in particular, how they visualized these ideas graphically and constructed symbols to represent the quantities and the relationships between their values. Further, my results revealed the importance of distinguishing between conceptualizing an instantaneous rate of change assuming a constant rate of change over any amount of change in the independent quantity(s) and using this rate of change to generate an approximate amount of change in the value of the dependent quantity. Alonzo initially conceptualized rate of change and derivative as the slantiness of a line that intersected a function’s curve. John also referred to the derivative at a point as the slope of the line tangent to the curve at that point, but he appeared to conceptualize the derivative as a ratio of the changes in two quantities values and imagined (represented graphically) two changes while discussing how to make this ratio more precise and use its value to make linear projections of future function values and amounts of accumulation. John also conceptualized the derivative as the best local, linear approximation for a function.
ContributorsBettersworth, Zachary S (Author) / Carlson, Marilyn (Thesis advisor) / Harel, Guershon (Committee member) / Roh, Kyeong Hah (Committee member) / Thompson, Patrick W. (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2023
171831-Thumbnail Image.png
Description
This dissertation reports on three studies about students’ conceptions and learning of the idea of instantaneous rate of change. The first study investigated 25 students’ conceptions of the idea of instantaneous rate of change. The second study proposes a hypothetical learning trajectory, based on the literature and results from the

This dissertation reports on three studies about students’ conceptions and learning of the idea of instantaneous rate of change. The first study investigated 25 students’ conceptions of the idea of instantaneous rate of change. The second study proposes a hypothetical learning trajectory, based on the literature and results from the first study, for learning the idea of instantaneous rate of change. The third study investigated two students’ thinking and learning in the context of a sequence of five exploratory teaching interviews. The first paper reports on the results of conducting clinical interviews with 25 students. The results revealed the diverse conceptions that Calculus students have about the value of a derivative at a given input value. The results also suggest that students’ interpretation of the value of a rate of change is related to their use of covariational reasoning when considering how two quantities’ values vary together. The second paper presents a conceptual analysis on the ways of thinking needed to develop a productive understanding of instantaneous rate of change. This conceptual analysis includes an ordered list of understandings and reasoning abilities that I hypothesize to be essential for understanding the idea of instantaneous rate of change. This paper also includes a sequence of tasks and questions I designed to support students in developing the ways of thinking and meanings described in my conceptual analysis. The third paper reports on the results of five exploratory teaching interviews that leveraged my hypothetical learning trajectory from the second paper. The results of this teaching experiment indicate that developing a coherent understanding of rate of change using quantitative reasoning can foster advances in students’ understanding of instantaneous rate of change as a constant rate of change over an arbitrarily small input interval of a function’s domain.
ContributorsYu, Franklin (Author) / Carlson, Marilyn (Thesis advisor) / Zandieh, Michelle (Committee member) / Thompson, Patrick (Committee member) / Roh, Kyeong Hah (Committee member) / Soto, Roberto (Committee member) / Arizona State University (Publisher)
Created2022
168632-Thumbnail Image.png
Description
Studies of discourse are prevalent in mathematics education, as are investigations on facilitating change in instructional practices that impact student attitudes toward mathematics. However, the literature has not sufficiently addressed the operationalization of the commognitive framework in the context of Calculus I, nor considered the inevitable impact on students’ attitudes

Studies of discourse are prevalent in mathematics education, as are investigations on facilitating change in instructional practices that impact student attitudes toward mathematics. However, the literature has not sufficiently addressed the operationalization of the commognitive framework in the context of Calculus I, nor considered the inevitable impact on students’ attitudes of persistence, confidence, and enjoyment of mathematics. This study presents an innovation, founded, designed, and implemented, utilizing four frameworks. The overarching theory pivots to commognition, a theory that asserts communication is tantamount to thinking. Students experienced a Calculus I class grounded on four frames: a theoretical, a conceptual, a design pattern, and an analytical framework, which combined, engaged students in discursive practices. Multiple activities invited specific student actions: uncover, play, apply, connect, question, and realize, prompting calculus discourse. The study exploited a mixed-methods action research design that aimed to explore how discursive activities impact students’ understanding of the derivative and how and to what extent instructional practices, which prompt mathematical discourse, impact students’ persistence, confidence, and enjoyment of calculus. This study offers a potential solution to a problem of practice that has long challenged practitioners and researchers—the persistence of Calculus I as a gatekeeper for Science, Technology, Engineering, and Mathematics (STEM). In this investigation it is suggested that Good and Ambitious Teaching practices, including asking students to explain their thinking and assigning group projects, positively impact students’ persistence, confidence, and enjoyment. Common calculus discourse among the experimental students, particularly discursive activities engaging word use and visual representations of the derivative, warrants further research for the pragmatic utility of the fine grain of a commognitive framework. For researchers the work provides a lens through which they can examine data resulting from the operationalization of multiple frameworks working in tandem. For practitioners, mathematical objects as discursive objects, allow for classrooms with readily observable outcomes.
ContributorsChowdhury, Madeleine Perez (Author) / Judson, Eugene (Thesis advisor) / Buss, Ray (Committee member) / Reinholz, Daniel (Committee member) / Arizona State University (Publisher)
Created2022