Matching Items (17)
Filtering by

Clear all filters

151831-Thumbnail Image.png
Description
The need for improved mathematics education in many of America's schools that serve students from low income households has been extensively documented. This practical action research study, set in a suburban Title I school with a primarily Hispanic, non-native English speaking population, is designed to explore the effects of the

The need for improved mathematics education in many of America's schools that serve students from low income households has been extensively documented. This practical action research study, set in a suburban Title I school with a primarily Hispanic, non-native English speaking population, is designed to explore the effects of the progression through a set of problem solving solution strategies on the mathematics problem solving abilities of 2nd grade students. Students worked in class with partners to complete a Cognitively Guided Instruction-style (CGI) mathematics word problem using a dictated solution strategy five days a week for twelve weeks, three or four weeks for each of four solution strategies. The phases included acting out the problem using realia, representing the problem using standard mathematics manipulatives, modeling the problem using a schematic representation, and solving the problem using a number sentence. Data were collected using a five question problem solving pre- and post-assessment, video recorded observations, and Daily Answer Recording Slips or Mathematics Problem Solving Journals. Findings showed that this problem solving innovation was effective in increasing the problem solving abilities of all participants in this study, with an average increase of 63% in the number of pre-assessment to post-assessment questions answered correctly. Additionally, students increased the complexity of solutions used to solve problems and decreased the rate of guessing at answers to word problems. Further rounds of research looking into the direct effects of the MKO are suggested as next steps of research.
ContributorsSpilde, Amy (Author) / Zambo, Ronald (Thesis advisor) / Heck, Thomas (Committee member) / Nicoloff, Stephen J. (Committee member) / Arizona State University (Publisher)
Created2013
151525-Thumbnail Image.png
Description
ABSTRACT There is a continuing emphasis in the United States to improve student's mathematical abilities and one approach is to better prepare teachers. This study investigated the effects of using lesson study with preservice secondary mathematics teachers to improve their proficiency at planning and implementing instruction. The participants were students

ABSTRACT There is a continuing emphasis in the United States to improve student's mathematical abilities and one approach is to better prepare teachers. This study investigated the effects of using lesson study with preservice secondary mathematics teachers to improve their proficiency at planning and implementing instruction. The participants were students (preservice teachers) in an undergraduate teacher preparation program at a private university who were enrolled in a mathematics methods course for secondary math teachers. This project used lesson study to engage preservice teachers in collaboratively creating lessons, field testing them, using feedback to revise the lessons, and re-teaching the revised lesson. The preservice teachers worked through multiple cycles of the process in their secondary math methods class receiving feedback from their peers and instructor prior to teaching the lessons in their field experience (practicum). A mixed methods approach was implemented to investigate the preservice teacher's abilities to plan and implement instruction as well as their efficacy for teaching. Data were collected from surveys, video analysis, student reflections, and semi-structured interviews. The findings from this study indicate that lesson study for preservice teachers was an effective means of teacher education. Lesson study positively impacted the preservice teachers' ability to plan and teach mathematical lessons more effectively. The preservice teachers successfully transitioned from teaching in the methods classroom to their field experience classroom during this innovation. Further, the efficacy of the preservice teachers to teach secondary mathematics increased based on this innovation. Further action research cycles of lesson study with preservice teachers are recommended.
ContributorsMostofo, Jameel (Author) / Zambo, Ronald (Thesis advisor) / Elliott, Sherman (Committee member) / Heck, Thomas (Committee member) / Arizona State University (Publisher)
Created2013
150539-Thumbnail Image.png
Description
This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet

This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet vector calculus, calculus on manifolds, linear algebra, and differential equations all rest upon the idea of functions of two (or more) variables. This dissertation contributes to understanding productive ways of thinking that can support students in thinking about functions of two or more variables as they describe complex systems with multiple variables interacting. This dissertation focuses on modeling the way of thinking of four students who participated in a specific instructional sequence designed to explore the limits of their ways of thinking and in turn, develop a robust model that could explain, describe, and predict students' actions relative to specific tasks. The data was collected using a teaching experiment methodology, and the tasks within the teaching experiment leveraged quantitative reasoning and covariation as foundations of students developing a coherent understanding of two-variable functions and their rates of change. The findings of this study indicated that I could characterize students' ways of thinking about two-variable functions by focusing on their use of novice and/or expert shape thinking, and the students' ways of thinking about rate of change by focusing on their quantitative reasoning. The findings suggested that quantitative and covariational reasoning were foundational to a student's ability to generalize their understanding of a single-variable function to two or more variables, and their conception of rate of change to rate of change at a point in space. These results created a need to better understand how experts in the field, such as mathematicians and mathematics educators, thinking about multivariable functions and their rates of change.
ContributorsWeber, Eric David (Author) / Thompson, Patrick (Thesis advisor) / Middleton, James (Committee member) / Carlson, Marilyn (Committee member) / Saldanha, Luis (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2012
149575-Thumbnail Image.png
Description
In any instructional situation, the instructor's goal is to maximize the learning attained by students. Drawing on the adage, 'we learn best what we have taught,' this action research project was conducted to examine whether students, in fact, learned college algebra material better if they taught it to their peers.

In any instructional situation, the instructor's goal is to maximize the learning attained by students. Drawing on the adage, 'we learn best what we have taught,' this action research project was conducted to examine whether students, in fact, learned college algebra material better if they taught it to their peers. The teaching-to-learn process was conducted in the following way. The instructor-researcher met with individual students and taught a college algebra topic to a student who served as the leader of a group of four students. At the next step, the student who originally learned the material from the instructor met with three other students in a small group session and taught the material to them to prepare an in-class presentation. Students in these small group sessions discussed how best to present the material, anticipated questions, and prepared a presentation to be shared with their classmates. The small group then taught the material to classmates during an in-class review session prior to unit examinations. Quantitative and qualitative data were gathered. Quantitative data consisted of pre- and post-test scores on four college algebra unit examinations. In addition, scores from Likert-scale items on an end-of-semester questionnaire that assessed the effectiveness of the teaching-to-learn process and attitudes toward the process were obtained. Qualitative data consisted of field notes from observations of selected small group sessions and in-class presentations. Additional qualitative data included responses to open-ended questions on the end-of-semester questionnaire and responses to interview items posed to groups of students. Results showed the quantitative data did not support the hypothesis that material, which was taught, was better learned than other material. Nevertheless, qualitative data indicated students were engaged in the material, had a deeper understanding of the material, and were more confident about it as a result of their participation in the teaching-to-learn process. Students also viewed the teaching-to-learn process as being effective and they had positive attitudes toward the teaching-to-learn process. Discussion focused on how engagement, deeper understanding and confidence interacted with one another to increase student learning. Lessons learned, implications for practice, and implications for further action research were also discussed.
ContributorsNicoloff, Stephen J (Author) / Buss, Ray R (Thesis advisor) / Zambo, Ronald (Committee member) / Shaw, Phyllis J (Committee member) / Arizona State University (Publisher)
Created2011
157668-Thumbnail Image.png
Description
This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct

This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct of frame of reference. The first paper is a theory paper that introduces the mental actions involved in reasoning with frames of reference. The concept of frames of reference, though commonly used in mathematics and physics, is not described cognitively in any literature. The paper offers a theoretical model of mental actions involved in conceptualizing a frame of reference. Additionally, it posits mental actions that are necessary for a student to reason with multiple frames of reference. It also extends the theory of quantitative reasoning with the construct of a ‘framed quantity’. The second paper investigates how two introductory calculus students who participated in teaching experiments reasoned about changes (variations). The data was analyzed to see to what extent each student conceptualized the variations within a conceptualized frame of reference as described in the first paper. The study found that the extent to which each student conceptualized, coordinated, and combined reference frames significantly affected his ability to reason productively about variations and to make sense of his own answers. The paper ends by analyzing 123 calculus students’ written responses to one of the tasks to build hypotheses about how calculus students reason about variations within frames of reference. The third paper reports how U.S. and Korean secondary mathematics teachers reason with frame of reference on open-response items. An assessment with five frame of reference tasks was given to 539 teachers in the US and Korea, and the responses were coded with rubrics intended to categorize responses by the extent to which they demonstrated conceptualized and coordinated frames of reference. The results show that the theory in the first study is useful in analyzing teachers’ reasoning with frames of reference, and that the items and rubrics function as useful tools in investigating teachers’ meanings for quantities within a frame of reference.
ContributorsJoshua, Surani Ashanthi (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn (Committee member) / Roh, Kyeong Hah (Committee member) / Middleton, James (Committee member) / Culbertson, Robert (Committee member) / Arizona State University (Publisher)
Created2019
171985-Thumbnail Image.png
Description
This three-article dissertation considers the pedagogical practices for developing statistically literate students and teaching data-driven decision-making with the goal of preparing students for civic engagement and improving student achievement. The first article discusses a critical review of the literature on data-driven decision-making project conditions in K-12 educational settings. Upon reviewing

This three-article dissertation considers the pedagogical practices for developing statistically literate students and teaching data-driven decision-making with the goal of preparing students for civic engagement and improving student achievement. The first article discusses a critical review of the literature on data-driven decision-making project conditions in K-12 educational settings. Upon reviewing the literature, I synthesized and summarized the current practices into three distinct models. The models serve to clarify the pedagogical choices of the teacher and the degree at which students' views are involved and incorporated into the projects. I propose an alternative model/framework and discuss possible implications in the classroom. In the second article, I use the framework developed in the first article as the basis for an educational research intervention. I describe a study where I developed a handbook based on the framework and implemented a sample of professional development sessions from the handbook. Advisors and teachers provided feedback on the handbook and professional development. This feedback served as the subject of analysis while I continued to refine the handbook and the professional learning sessions. I describe the refinement process and the implications in terms of design decisions of educational interventions and statistical knowledge for teaching. The final article performs a secondary data analysis of school, teacher, and student level data using the Trends in International Mathematics and Science Study (TIMSS) database. The paper seeks to answer the research question: “Which aspects of teacher professional knowledge measures predict student achievement in the mathematical domain of data and statistical topics?” The results indicate that when controlling for school level wealth index, teacher characteristics are not as influential as the school level wealth index. I discuss future research as well as school policy and curriculum implications of these results.
ContributorsRiske, Amanda Katherine (Author) / Zuiker, Steven (Thesis advisor) / Milner, Fabio (Thesis advisor) / Middleton, James (Committee member) / Pivovarova, Margarita (Committee member) / Arizona State University (Publisher)
Created2022
161800-Thumbnail Image.png
Description
This dissertation is on the topic of sameness of representation of mathematical entities from a mathematics education perspective. In mathematics, people frequently work with different representations of the same thing. This is especially evident when considering the prevalence of the equals sign (=). I am adopting the three-paper dissertation model.

This dissertation is on the topic of sameness of representation of mathematical entities from a mathematics education perspective. In mathematics, people frequently work with different representations of the same thing. This is especially evident when considering the prevalence of the equals sign (=). I am adopting the three-paper dissertation model. Each paper reports on a study that investigates understandings of the identity relation. The first study directly addresses function identity: how students conceptualize, work with, and assess sameness of representation of function. It uses both qualitative and quantitative methods to examine how students understand function sameness in calculus contexts. The second study is on the topic of implicit differentiation and student understanding of the legitimacy of it as a procedure. This relates to sameness insofar as differentiating an equation is a valid inference when the equation expresses function identity. The third study directly addresses usage of the equals sign (“=”). In particular, I focus on the notion of symmetry; equality is a symmetric relation (truth-functionally), and mathematicians understand it as such. However, results of my study show that usage is not symmetric. This is small qualitative study and incorporates ideas from the field of linguistics.
ContributorsMirin, Alison (Author) / Zazkis, Dov (Thesis advisor) / Dawkins, Paul C. (Committee member) / Thompson, Patrick W. (Committee member) / Milner, Fabio (Committee member) / Kawski, Matthias (Committee member) / Arizona State University (Publisher)
Created2021
168632-Thumbnail Image.png
Description
Studies of discourse are prevalent in mathematics education, as are investigations on facilitating change in instructional practices that impact student attitudes toward mathematics. However, the literature has not sufficiently addressed the operationalization of the commognitive framework in the context of Calculus I, nor considered the inevitable impact on students’ attitudes

Studies of discourse are prevalent in mathematics education, as are investigations on facilitating change in instructional practices that impact student attitudes toward mathematics. However, the literature has not sufficiently addressed the operationalization of the commognitive framework in the context of Calculus I, nor considered the inevitable impact on students’ attitudes of persistence, confidence, and enjoyment of mathematics. This study presents an innovation, founded, designed, and implemented, utilizing four frameworks. The overarching theory pivots to commognition, a theory that asserts communication is tantamount to thinking. Students experienced a Calculus I class grounded on four frames: a theoretical, a conceptual, a design pattern, and an analytical framework, which combined, engaged students in discursive practices. Multiple activities invited specific student actions: uncover, play, apply, connect, question, and realize, prompting calculus discourse. The study exploited a mixed-methods action research design that aimed to explore how discursive activities impact students’ understanding of the derivative and how and to what extent instructional practices, which prompt mathematical discourse, impact students’ persistence, confidence, and enjoyment of calculus. This study offers a potential solution to a problem of practice that has long challenged practitioners and researchers—the persistence of Calculus I as a gatekeeper for Science, Technology, Engineering, and Mathematics (STEM). In this investigation it is suggested that Good and Ambitious Teaching practices, including asking students to explain their thinking and assigning group projects, positively impact students’ persistence, confidence, and enjoyment. Common calculus discourse among the experimental students, particularly discursive activities engaging word use and visual representations of the derivative, warrants further research for the pragmatic utility of the fine grain of a commognitive framework. For researchers the work provides a lens through which they can examine data resulting from the operationalization of multiple frameworks working in tandem. For practitioners, mathematical objects as discursive objects, allow for classrooms with readily observable outcomes.
ContributorsChowdhury, Madeleine Perez (Author) / Judson, Eugene (Thesis advisor) / Buss, Ray (Committee member) / Reinholz, Daniel (Committee member) / Arizona State University (Publisher)
Created2022
156865-Thumbnail Image.png
Description
This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and

This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and discuss the implications of these uses for interpreting and leveraging results to produce empirically tested learning trajectories. From my summary and analysis I develop two recommendations for the cognitive researchers developing empirically supported learning trajectories. (1) A researcher should frame his/her work, and analyze others’ work, within the researcher’s image of a broadly coherent trajectory for student learning and (2) that the field should work towards a common understanding for the meaning of a hypothetical learning trajectory.

In Paper 2 I argue that prior research in online learning has tested the impact of online courses on measures such as student retention rates, satisfaction scores, and GPA but that research is needed to describe the meanings students construct for mathematical ideas researchers have identified as critical to their success in future math courses and other STEM fields. This paper discusses the need for a new focus in studying online mathematics learning and calls for cognitive researchers to begin developing a productive methodology for examining the meanings students construct while engaged in online lessons.

Paper 3 describes the online Precalculus course intervention we designed around measurement imagery and quantitative reasoning as themes that unite topics across units. I report results relative to the meanings students developed for exponential functions and related ideas (such as percent change and growth factors) while working through lessons in the intervention. I provide a conceptual analysis guiding its design and discuss pre-test and pre-interview results, post-test and post-interview results, and observations from student behaviors while interacting with lessons. I demonstrate that the targeted meanings can be productive for students, show common unproductive meanings students possess as they enter Precalculus, highlight challenges and opportunities in teaching and learning in the online environment, and discuss needed adaptations to the intervention and future research opportunities informed by my results.
ContributorsO'Bryan, Alan Eugene (Author) / Carlson, Marilyn P (Thesis advisor) / Thompson, Patrick W (Committee member) / Milner, Fabio (Committee member) / Roh, Kyeong Hah (Committee member) / Tallman, Michael (Committee member) / Arizona State University (Publisher)
Created2018
154936-Thumbnail Image.png
Description
Public Mathematics Education is not at its best in the United States and technology is often seen as part of the solution to address this issue. With the existence of high-speed Internet, mobile technologies, ever-improving computer programming and graphing, the concepts of learning management systems (LMS’s) and online learning environments

Public Mathematics Education is not at its best in the United States and technology is often seen as part of the solution to address this issue. With the existence of high-speed Internet, mobile technologies, ever-improving computer programming and graphing, the concepts of learning management systems (LMS’s) and online learning environments (OLE’s), technology-based learning has elevated to a whole new level. The new generation of online learning enables multi-modal utilization, and, interactivity with instant feedback, among the other precious characteristics identified in this study. The studies that evaluated the effects of online learning often measured the immediate impacts on student achievement; there are very few studies that have investigated the longer-term effects in addition to the short term ones.

In this study, the effects of the new generation Online Learning Activity Based (OLAB) Curriculum on middle school students’ achievement in mathematics at the statewide high-stakes testing system were examined. The results pointed out that the treatment group performed better than the control group in the short term (immediately after the intervention), medium term (one year after the intervention), and long term (two years after the intervention) and that the results were statistically significant in the short and long terms.

Within the context of this study, the researcher also examined some of the factors affecting student achievement while using the OLE as a supplemental resource, namely, the time and frequency of usage, professional development of the facilitators, modes of instruction, and fidelity of implementation. While the researcher detected positive correlations between all of the variables and student achievement, he observed that school culture is indeed a major feature creating the difference attributed to the treatment group teachers.

The researcher discovered that among the treatment group teachers, the ones who spent more time on professional development, used the OLE with greater fidelity and attained greater gains in student achievement and interestingly they came from the same schools. This verified the importance of school culture in teachers’ attitudes toward making the most of the resources made available to them so as to achieve better results in terms of student success in high stakes tests.
ContributorsMeylani, Rusen (Author) / Bitter, Gary G. (Thesis advisor) / Legacy, Jane (Committee member) / Buss, Ray (Committee member) / Arizona State University (Publisher)
Created2016