Matching Items (13)
Filtering by

Clear all filters

151965-Thumbnail Image.png
Description
Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In

Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In particular, the focus was on the stable patterns of reasoning, known as ways of thinking, which students applied in a variety of combinatorial situations and tasks. This study catalogued students' ways of thinking about solution sets as they progressed through an instructional sequence. In addition, the relationships between the catalogued ways of thinking were explored. Further, the study investigated the challenges students experienced as they interacted with the tasks and instructional interventions, and how students' ways of thinking evolved as these challenges were overcome. Finally, it examined the role of instruction in guiding students to develop and extend their ways of thinking. Two pairs of undergraduate students with no formal experience with combinatorics participated in one of the two consecutive teaching experiments conducted in Spring 2012. Many ways of thinking emerged through the grounded theory analysis of the data, but only eight were identified as robust. These robust ways of thinking were classified into three categories: Subsets, Odometer, and Problem Posing. The Subsets category encompasses two ways of thinking, both of which ultimately involve envisioning the solution set as the union of subsets. The three ways of thinking in Odometer category involve holding an item or a set of items constant and systematically varying the other items involved in the counting process. The ways of thinking belonging to Problem Posing category involve spontaneously posing new, related combinatorics problems and finding relationships between the solution sets of the original and the new problem. The evolution of students' ways of thinking in the Problem Posing category was analyzed. This entailed examining the perturbation experienced by students and the resulting accommodation of their thinking. It was found that such perturbation and its resolution was often the result of an instructional intervention. Implications for teaching practice are discussed.
ContributorsHalani, Aviva (Author) / Roh, Kyeong Hah (Thesis advisor) / Fishel, Susanna (Committee member) / Saldanha, Luis (Committee member) / Thompson, Patrick (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2013
153186-Thumbnail Image.png
Description
This study explores teacher educators' personal theories about the instructional practices central to preparing future teachers, how they enact those personal theories in the classroom, how they represent the relationship between content, pedagogy, and technology, and the function of technology in teacher educators' personal theories about the teaching of mathematics

This study explores teacher educators' personal theories about the instructional practices central to preparing future teachers, how they enact those personal theories in the classroom, how they represent the relationship between content, pedagogy, and technology, and the function of technology in teacher educators' personal theories about the teaching of mathematics and their practices as enacted in the classroom. The conceptual frameworks of knowledge as situated and technology as situated provide a theoretical and analytical lens for examining individual instructor's conceptions and classroom activity as situated in the context of experiences and relationships in the social world. The research design employs a mixed method design to examine data collected from a representative sample of three full-time faculty members teaching methods of teaching mathematics in elementary education at the undergraduate level. Three primary types of data were collected and analyzed:

a) structured interviews using the repertory grid technique to model the mathematics education instructors' schemata regarding the teaching of mathematics methods; b) content analysis of classroom observations to develop models that represent the relationship of pedagogy, content, and technology as enacted in the classrooms; and c) brief retrospective protocols after each observed class session to explore the reasoning and individual choices made by an instructor that underlie their teaching decisions in the classroom. Findings reveal that although digital technology may not appear to be an essential component of an instructor's toolkit, technology can still play an integral role in teaching. This study puts forward the idea of repurposing as technology -- the ability to repurpose items as models, tools, and visual representations and integrate them into the curriculum. The instructors themselves became the technology, or the mediational tool, and introduced students to new meanings for "old" cultural artifacts in the classroom. Knowledge about the relationships between pedagogy, content, and technology and the function of technology in the classroom can be used to inform professional development for teacher educators with the goal of improving teacher preparation in mathematics education.
ContributorsToth, Meredith Jean (Author) / Middleton, James (Thesis advisor) / Sloane, Finbarr (Committee member) / Buss, Ray (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2014
150539-Thumbnail Image.png
Description
This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet

This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet vector calculus, calculus on manifolds, linear algebra, and differential equations all rest upon the idea of functions of two (or more) variables. This dissertation contributes to understanding productive ways of thinking that can support students in thinking about functions of two or more variables as they describe complex systems with multiple variables interacting. This dissertation focuses on modeling the way of thinking of four students who participated in a specific instructional sequence designed to explore the limits of their ways of thinking and in turn, develop a robust model that could explain, describe, and predict students' actions relative to specific tasks. The data was collected using a teaching experiment methodology, and the tasks within the teaching experiment leveraged quantitative reasoning and covariation as foundations of students developing a coherent understanding of two-variable functions and their rates of change. The findings of this study indicated that I could characterize students' ways of thinking about two-variable functions by focusing on their use of novice and/or expert shape thinking, and the students' ways of thinking about rate of change by focusing on their quantitative reasoning. The findings suggested that quantitative and covariational reasoning were foundational to a student's ability to generalize their understanding of a single-variable function to two or more variables, and their conception of rate of change to rate of change at a point in space. These results created a need to better understand how experts in the field, such as mathematicians and mathematics educators, thinking about multivariable functions and their rates of change.
ContributorsWeber, Eric David (Author) / Thompson, Patrick (Thesis advisor) / Middleton, James (Committee member) / Carlson, Marilyn (Committee member) / Saldanha, Luis (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2012
156439-Thumbnail Image.png
Description
There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document,

There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document, I present the three papers of my dissertation study. The first paper examines two students’ development of concepts foundational to the idea of logarithm. This paper discusses two essential understandings that were revealed to be problematic and essential for students’ development of productive meanings for exponents, logarithms and logarithmic properties. The findings of this study informed my later work to support students in understanding logarithms, their properties and logarithmic functions. The second paper examines two students’ development of the idea of logarithm. This paper describes the reasoning abilities two students exhibited as they engaged with tasks designed to foster their construction of more productive meanings for the idea of logarithm. The findings of this study provide novel insights for supporting students in understanding the idea of logarithm meaningfully. Finally, the third paper begins with an examination of the historical development of the idea of logarithm. I then leveraged the insights of this literature review and the first two papers to perform a conceptual analysis of what is involved in learning and understanding the idea of logarithm. The literature review and conceptual analysis contributes novel and useful information for curriculum developers, instructors, and other researchers studying student learning of this idea.
ContributorsKuper Flores, Emily Ginamarie (Author) / Carlson, Marilyn (Thesis advisor) / Thompson, Patrick (Committee member) / Milner, Fabio (Committee member) / Zazkis, Dov (Committee member) / Czocher, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
157227-Thumbnail Image.png
Description
The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes? This study sought to explore what understandings of stochastic

The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes? This study sought to explore what understandings of stochastic process students develop as they work through materials intended to support them in constructing the long-run behavior meaning for distribution.

I collected data in three phases. First, I conducted a set of task-based clinical interviews that allowed me to build initial models for the students’ meanings for randomness and probability. Second, I worked with Bonnie in an exploratory teaching setting through three sets of activities to see what meanings she would develop for randomness and stochastic process. The final phase consisted of me working with Danielle as she worked through the same activities as Bonnie but this time in teaching experiment setting where I used a series of interventions to test out how Danielle was thinking about stochastic processes.

My analysis shows that students can be aware that the word “random” lives in two worlds, thereby having conflicting meanings. Bonnie’s meaning for randomness evolved over the course of the study from an unproductive meaning centered on the emotions of the characters in the context to a meaning that randomness is the lack of a pattern. Bonnie’s lack of pattern meaning for randomness subsequently underpinned her image of stochastic/processes, leading her to engage in pattern-hunting behavior every time she needed to classify a process as stochastic or not. Danielle’s image of a stochastic process was grounded in whether she saw the repetition as being reproducible (process can be repeated, and outcomes are identical to prior time through the process) or replicable (process can be repeated but the outcomes aren’t in the same order as before). Danielle employed a strategy of carrying out several trials of the process, resetting the applet, and then carrying out the process again, making replicability central to her thinking.
ContributorsHatfield, Neil (Author) / Thompson, Patrick (Thesis advisor) / Carlson, Marilyn (Committee member) / Middleton, James (Committee member) / Lehrer, Richard (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2019
154936-Thumbnail Image.png
Description
Public Mathematics Education is not at its best in the United States and technology is often seen as part of the solution to address this issue. With the existence of high-speed Internet, mobile technologies, ever-improving computer programming and graphing, the concepts of learning management systems (LMS’s) and online learning environments

Public Mathematics Education is not at its best in the United States and technology is often seen as part of the solution to address this issue. With the existence of high-speed Internet, mobile technologies, ever-improving computer programming and graphing, the concepts of learning management systems (LMS’s) and online learning environments (OLE’s), technology-based learning has elevated to a whole new level. The new generation of online learning enables multi-modal utilization, and, interactivity with instant feedback, among the other precious characteristics identified in this study. The studies that evaluated the effects of online learning often measured the immediate impacts on student achievement; there are very few studies that have investigated the longer-term effects in addition to the short term ones.

In this study, the effects of the new generation Online Learning Activity Based (OLAB) Curriculum on middle school students’ achievement in mathematics at the statewide high-stakes testing system were examined. The results pointed out that the treatment group performed better than the control group in the short term (immediately after the intervention), medium term (one year after the intervention), and long term (two years after the intervention) and that the results were statistically significant in the short and long terms.

Within the context of this study, the researcher also examined some of the factors affecting student achievement while using the OLE as a supplemental resource, namely, the time and frequency of usage, professional development of the facilitators, modes of instruction, and fidelity of implementation. While the researcher detected positive correlations between all of the variables and student achievement, he observed that school culture is indeed a major feature creating the difference attributed to the treatment group teachers.

The researcher discovered that among the treatment group teachers, the ones who spent more time on professional development, used the OLE with greater fidelity and attained greater gains in student achievement and interestingly they came from the same schools. This verified the importance of school culture in teachers’ attitudes toward making the most of the resources made available to them so as to achieve better results in terms of student success in high stakes tests.
ContributorsMeylani, Rusen (Author) / Bitter, Gary G. (Thesis advisor) / Legacy, Jane (Committee member) / Buss, Ray (Committee member) / Arizona State University (Publisher)
Created2016
155127-Thumbnail Image.png
Description
The purpose of this study was to identify the algebraic reasoning abilities of young students prior to instruction. The goals of the study were to determine the influence of problem, problem type, question, grade level, and gender on: (a) young children’s abilities to predict the number of shapes in near

The purpose of this study was to identify the algebraic reasoning abilities of young students prior to instruction. The goals of the study were to determine the influence of problem, problem type, question, grade level, and gender on: (a) young children’s abilities to predict the number of shapes in near and far positions in a “growing” pattern without assistance; (b) the nature and amount of assistance needed to solve the problems; and (c) reasoning methods employed by children.

The 8-problem Growing Patterns and Functions Assessment (GPFA), with an accompanying interview protocol, were developed to respond to these goals. Each problem presents sequences of figures of geometric shapes that differ in complexity and can be represented by the function, y = mf +b: in Type 1 problems (1 - 4), m = 1, and in Type 2 problems (5 - 8), m = 2. The two questions in each problem require participants to first, name the number of shapes in the pattern in a near position, and then to identify the number of shapes in a far position. To clarify reasoning methods, participants were asked how they solved the problems.

The GPFA was administered, one-on-one, to 60 students in Grades 1, 2, and 3 with an equal number of males and females from the same elementary school. Problem solution scores without and with assistance, along with reasoning method(s) employed, were tabulated.

Results of data analyses showed that when no assistance was required, scores varied significantly by problem, problem type, and question, but not grade level or gender. With assistance, problem scores varied significantly by problem, problem type, question, and grade level, but not gender.
ContributorsCavanagh, Mary Clare (Author) / Greenes, Carole E. (Thesis advisor) / Buss, Ray (Committee member) / Surbeck, Elaine (Committee member) / Arizona State University (Publisher)
Created2016
168632-Thumbnail Image.png
Description
Studies of discourse are prevalent in mathematics education, as are investigations on facilitating change in instructional practices that impact student attitudes toward mathematics. However, the literature has not sufficiently addressed the operationalization of the commognitive framework in the context of Calculus I, nor considered the inevitable impact on students’ attitudes

Studies of discourse are prevalent in mathematics education, as are investigations on facilitating change in instructional practices that impact student attitudes toward mathematics. However, the literature has not sufficiently addressed the operationalization of the commognitive framework in the context of Calculus I, nor considered the inevitable impact on students’ attitudes of persistence, confidence, and enjoyment of mathematics. This study presents an innovation, founded, designed, and implemented, utilizing four frameworks. The overarching theory pivots to commognition, a theory that asserts communication is tantamount to thinking. Students experienced a Calculus I class grounded on four frames: a theoretical, a conceptual, a design pattern, and an analytical framework, which combined, engaged students in discursive practices. Multiple activities invited specific student actions: uncover, play, apply, connect, question, and realize, prompting calculus discourse. The study exploited a mixed-methods action research design that aimed to explore how discursive activities impact students’ understanding of the derivative and how and to what extent instructional practices, which prompt mathematical discourse, impact students’ persistence, confidence, and enjoyment of calculus. This study offers a potential solution to a problem of practice that has long challenged practitioners and researchers—the persistence of Calculus I as a gatekeeper for Science, Technology, Engineering, and Mathematics (STEM). In this investigation it is suggested that Good and Ambitious Teaching practices, including asking students to explain their thinking and assigning group projects, positively impact students’ persistence, confidence, and enjoyment. Common calculus discourse among the experimental students, particularly discursive activities engaging word use and visual representations of the derivative, warrants further research for the pragmatic utility of the fine grain of a commognitive framework. For researchers the work provides a lens through which they can examine data resulting from the operationalization of multiple frameworks working in tandem. For practitioners, mathematical objects as discursive objects, allow for classrooms with readily observable outcomes.
ContributorsChowdhury, Madeleine Perez (Author) / Judson, Eugene (Thesis advisor) / Buss, Ray (Committee member) / Reinholz, Daniel (Committee member) / Arizona State University (Publisher)
Created2022
189254-Thumbnail Image.png
Description
Authors of calculus texts often include graphs in the text with the intent that the graph depicts relationships described in theorems and formulas. Similarly, graphs are often utilized in classroom lectures and discussions for the same purpose. The author or instructor includes function graphs to represent quantitative relationships and how

Authors of calculus texts often include graphs in the text with the intent that the graph depicts relationships described in theorems and formulas. Similarly, graphs are often utilized in classroom lectures and discussions for the same purpose. The author or instructor includes function graphs to represent quantitative relationships and how a pair of quantities vary. Previous research has shown that different students interpret calculus statements differently depending on their meanings of points in the coordinate plane. As a result, students' widely differing interpretations of graphs presented to them. Researchers studying how students understand graphs of continuous functions and coordinate planes have developed many constructs to explain potential aspects of students' thinking about coordinate points, coordinate planes, variation, covariation, and continuous functions. No current research investigates how the different ways of thinking about graphs correlate. In other words, are there some ways of thinking that tend to either occur together or not occur together? In this research, I investigated student's system of meanings to describe how the different ways of understanding coordinate planes, coordinate points, and graphs of functions in the coordinate planes are related in students’ thinking. I determine a relationship between students' understanding of number lines or coordinate planes containing an infinite collection of numbers and their ability to identify a graph representing a dynamic situation. Additionally, I determined a relationship between students reasoning with values (instead of shapes) and their ability to create a graph to represent a dynamic situation.
ContributorsVillatoro, Barbara (Author) / Thompson, Patrick (Thesis advisor) / Carlson, Marilyn (Committee member) / Moore, Kevin (Committee member) / Roh, Kyeong Hah (Committee member) / Draney, Karen (Committee member) / Arizona State University (Publisher)
Created2023
187684-Thumbnail Image.png
Description
Over the past thirty years, research on teachers’ mathematical knowledge for teaching (MKT) has developed and grown in popularity as an area of focus for improving mathematics teaching and students’ learning. Many scholars have investigated types of knowledge teachers use when teaching and the relationship between teacher knowledge and student

Over the past thirty years, research on teachers’ mathematical knowledge for teaching (MKT) has developed and grown in popularity as an area of focus for improving mathematics teaching and students’ learning. Many scholars have investigated types of knowledge teachers use when teaching and the relationship between teacher knowledge and student performance. However, few researchers have studied the sources of teachers’ pedagogical decisions and actions and some studies have reported that advances in teachers’ mathematical meanings does not necessarily lead to a teacher conveying strong meanings to students. It has also been reported that a teacher’s ways of thinking about teaching an idea and actions to decenter can influence the teacher’s interactions with students.This document presents three papers detailing a multiple-case study that constitutes my dissertation. The first paper reviews the constructs researchers have used to investigate teachers’ knowledge base. This paper also provides a characterization of the first case’s mathematical meaning for teaching angle measure and the impact of her meaning on her interactions with students while teaching her angle measure lessons. The second paper examines another instructor’s meaning for an angle and its measure and illustrates the symbiotic relationship between the teacher’s mathematical meanings for teaching and decentering actions. This paper also characterizes how an instructor’s commitment to quantitative reasoning influences the teacher’s instructional orientation and instructional actions. Finally, the third paper includes a cross-case analysis of the two instructors’ mathematical meanings for teaching sine function and their enacted teaching practices, including their choice of tasks, interactions with students, and explanations while teaching their sine function lessons.
ContributorsRocha, Abby (Author) / Carlson, Marilyn P (Thesis advisor) / Thompson, Patrick (Committee member) / Tallman, Michael (Committee member) / O'Bryan, Alan (Committee member) / Strom, April (Committee member) / Apkarian, Naneh (Committee member) / Arizona State University (Publisher)
Created2023