Matching Items (3)
136649-Thumbnail Image.png
Description
Women are now living longer than ever before, yet the age of spontaneous menopause has remained stable. This results in an increasing realization of the need for an effective treatment of cognitive and physiological menopausal and post-menopausal symptoms. The most common estrogen component of hormone therapy, conjugated equine estrogens (CEE;

Women are now living longer than ever before, yet the age of spontaneous menopause has remained stable. This results in an increasing realization of the need for an effective treatment of cognitive and physiological menopausal and post-menopausal symptoms. The most common estrogen component of hormone therapy, conjugated equine estrogens (CEE; Premarin) contains many estrogens that are not endogenous to the human body, and that may or may not be detrimental to cognition (Campbell and Whitehead, 1977; Engler-Chiurazzi et al., 2011; Acosta et al., 2010). We propose the use of a novel treatment option in the form of a naturally-circulating (bioidentical) estrogen called estriol. Due to estriol’s observed positive effects on synaptic functioning and neuroprotective effects in the hippocampus (Ziehn et al., 2012; Goodman et al., 1996), a brain structure important for spatial learning and memory, estriol is promising as a hormone therapy option that may attenuate menopausal- and age- related memory decline. In the current study, we administered one of the three bioidentical estrogens (17β-Estradiol, 4.0 µg/day; Estrone, 8.0 µg/day; Estriol, 8.0 µg/day) or the vehicle polyethylene glycol by subcutaneous osmotic pump to ovariectomized Fisher-344 rats. We compared these groups to each other using a battery of spatial learning tasks, including the water radial-arm maze (WRAM), Morris water maze (MM), and delayed-match-to-sample maze (DMS). We found that all estrogens impaired performance on the WRAM compared to vehicle, while 17β-estradiol administration improved overnight forgetting performance for the MM. The estriol group showed no cognitive enhancements relative to vehicle; however, there were several factors indicating that both our estriol and estradiol doses were too high, so future studies should investigate whether lower doses of estriol may be beneficial to cognition.
ContributorsStonebarger, Gail Ashley (Author) / Bimonte-Nelson, Heather (Thesis director) / Knight, George (Committee member) / Engler-Chiurrazzi, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2015-05
Description
To date, it has been difficult to elucidate the role of tau in learning and memory during adulthood due to developmental compensation of other microtubule associated proteins in Tau knockout (KO) mice. Here, we generated an adeno-associated virus (AAV) expressing a doxycycline (doxy)-inducible short-hairpin (sh) RNA targeted to tau, and

To date, it has been difficult to elucidate the role of tau in learning and memory during adulthood due to developmental compensation of other microtubule associated proteins in Tau knockout (KO) mice. Here, we generated an adeno-associated virus (AAV) expressing a doxycycline (doxy)-inducible short-hairpin (sh) RNA targeted to tau, and stereotaxically and bilaterally injected 7-month-old C57BL/6 mice with either the AAV-shRNAtau or an AAV expressing a scramble shRNA sequence. Seven days after the injections, all animals were administered doxy for thirty-five days to induce expression of shRNAs, after which they were tested in the open field, rotarod and Morris water maze (MWM) to assess anxiety like behavior, motor coordination and spatial reference memory, respectively. Our results show that reducing tau in the adult hippocampus produces significant impairments in motor coordination, endurance and spatial memory. Tissue analyses shows that tau knockdown reduces hippocampal dendritic spine density and the levels of BDNF and synaptophysin, two proteins involved in memory formation and plasticity. Our approach circumvents the developmental compensation issues observed in Tau KO models and shows that reducing tau levels during adulthood impairs cognition.
ContributorsTran, An Le (Author) / Oddo, Salvatore (Thesis director) / Velazquez, Ramon (Committee member) / Roberson, Erik (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155402-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that affects 5.4 million Americans. AD leads to memory loss, changes in behavior, and death. The key hallmarks of the disease are amyloid plaques and tau tangles, consisting of amyloid-β oligomers and hyperphosphorylated tau, respectively.

Rho-associated, coiled-coil-containing protein kinase (ROCK) is an enzyme

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that affects 5.4 million Americans. AD leads to memory loss, changes in behavior, and death. The key hallmarks of the disease are amyloid plaques and tau tangles, consisting of amyloid-β oligomers and hyperphosphorylated tau, respectively.

Rho-associated, coiled-coil-containing protein kinase (ROCK) is an enzyme that plays important roles in neuronal cells including mediating actin organization and dendritic spine morphogenesis. The ROCK inhibitor Fasudil has been shown to increase learning and working memory in aged rats, but another ROCK inhibitor, Y27632, was shown to impair learning and memory. I am interested in exploring how these, and other ROCK inhibitors, may be acting mechanistically to result in very different outcomes in treated animals.

Preliminary research on thirteen different ROCK inhibitors provides evidence that while Fasudil and a novel ROCK inhibitor, T343, decrease tau phosphorylation in vitro, Y27632 increases tau phosphorylation at a low dose and decreases at a high dose. Meanwhile, novel ROCK inhibitor T299 increases tau phosphorylation at a high dosage.

Further, an in vivo study using triple transgenic AD mice provides evidence that Fasudil improves reference memory and fear memory in both transgenic and wild-type mice, while Y27632 impairs reference memory in transgenic mice. Fasudil also decreases tau phosphorylation and Aβ in vivo, while Y27632 significantly increases the p-tau to total tau ratio.
ContributorsTurk, Mari (Author) / Huentelman, Matt (Thesis advisor) / Kusumi, Kenro (Thesis advisor) / Jensen, Kendall (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2017