Matching Items (2)
Filtering by

Clear all filters

133771-Thumbnail Image.png
Description
Urbanization rapidly alters the environment, leading to a decrease in biodiversity in urban areas. A challenge associated with urbanized areas is the increased heat caused by the urban heat island effect. Heat may have an important impact on arthropods particularly due to their status as ectotherms. Animal behavior reveals how

Urbanization rapidly alters the environment, leading to a decrease in biodiversity in urban areas. A challenge associated with urbanized areas is the increased heat caused by the urban heat island effect. Heat may have an important impact on arthropods particularly due to their status as ectotherms. Animal behavior reveals how individuals interact with their environment. A behavioral syndrome describes consistent individual differences in behaviors that are correlated across different behavioral contexts or situations. Understanding the Western Black Widow's behavioral responses to the urban heat island effect has important implications for the control of a pest species. In this study, the relationship between rising urban temperatures and voracity, web-building, and cannibalism behaviors of juvenile Western Black Widows was examined. Spiders raised in the urban temperature treatment were predicted to have more aggressive behavioral syndromes, characterized by shorter latencies to forage, greater web-building activity, and shorter latencies to cannibalize as compared to spiders raised in rural or intermediate temperature treatments. A correlation between the latency to attack the first fly and second fly was found, however there were no other correlations evidencing a behavioral syndrome. Temperature was found to affect foraging, web-building, and cannibalism behaviors where spiders in urban areas demonstrated increased activity in all behavioral contexts. The possession of behavioral plasticity rather than a behavioral syndrome is likely what allows Black Widows to be successful urban pests.
ContributorsGarver, Emily Elizabeth (Author) / Johnson, James Chadwick (Thesis director) / Foltz-Sweat, Jennifer (Committee member) / Kitchen, Kathryn (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) that results in the permanent scarring and damage of lung tissue. Currently, there is no known cause or viable treatment for this disease, and the majority of patients either receive a lung transplant or succumb to the disease within five

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) that results in the permanent scarring and damage of lung tissue. Currently, there is no known cause or viable treatment for this disease, and the majority of patients either receive a lung transplant or succumb to the disease within five years of diagnosis. This project centers around studying IPF through analyzing gene expression patterns in healthy vs. diseased lung tissue via spatial transcriptomics. Spatial transcriptomics is the study of individual RNA transcripts within cells on a spatial level. With the novel technology MERFISH, we can detect gene expression in a spatial context with single-cell resolution, allowing us to make inferences about certain patterns of gene expression that are solely driven by the pathology of the disease. A total of 120 cells were selected from 21 different lung samples - 6 healthy; 15 ILD. Within those lung samples, selected from 4 different tissue features - control, less fibrotic, more fibrotic, and cystic. We built an analysis pipeline in R to analyze cell type composition around these features at different distances from the center cell (0-75, 76-150, and 150-225 μm). Cell types were annotated at both a broad (less specific) and fine (more specific) level. Upon analyzing the relationship between the proportions of various cell types and distance from tissue features, we found that within the broad cell type annotation level, airway epithelium cells had a negative relationship with distance and were statistically significant through linear regression models. Within the fine cell type annotation level, ciliated/secretory cells displayed this same trend. The results above support our current understanding of cystic tissue in lung tissue, and is a foundation for understanding disease pathology as a whole.

ContributorsMallapragada, Saahithi (Author) / Wilson, Melissa (Thesis director) / Banovich, Nick (Thesis director) / Vannan, Annika (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05