Matching Items (6)
Filtering by

Clear all filters

134749-Thumbnail Image.png
Description
The growing urban heat island (UHI) phenomenon is having detrimental effects on urban populations and the environment, and therefore, must be addressed. The purpose of this research is to investigate possible strategies that could be utilized to reduce the effects of the urban heat island for the city of Phoenix.

The growing urban heat island (UHI) phenomenon is having detrimental effects on urban populations and the environment, and therefore, must be addressed. The purpose of this research is to investigate possible strategies that could be utilized to reduce the effects of the urban heat island for the city of Phoenix. Current strategies, case studies, and the ENVI-Met modeling software were used to finalize conclusions and suggestions to further progress Phoenix's goals in combating its urban heat island. Results from the studies found that there is much potential in reducing daytime and evening temperatures through improving infrastructure by means of increased vegetation in the forms of green roofs and walls, reducing anthropogenic heat release, improving artificial surface coverage, and implementing lasting policies for further development. Results from the ENVI-met microclimate program shows areas for further research in urban heat island mitigation strategies.
Created2016-12
134500-Thumbnail Image.png
Description
Engineers spend several years studying intense technical details of the processes that shape our world, yet few are exposed to classes addressing social behaviors or issues. Engineering culture creates specific barriers to addressing social science issues, such as unconscious bias, within engineering classrooms. I developed a curriculum that uses optical

Engineers spend several years studying intense technical details of the processes that shape our world, yet few are exposed to classes addressing social behaviors or issues. Engineering culture creates specific barriers to addressing social science issues, such as unconscious bias, within engineering classrooms. I developed a curriculum that uses optical illusions, Legos, and the instructor's vulnerability to tackle unconscious bias in a way that addresses the barriers in engineering culture that prevent engineers from learning social science issues. Unconscious bias has documented long-term negative impacts on success and personal development, even in engineering environments. Creating a module in engineering education that addresses unconscious bias with the aim of reducing the negative effects of bias would benefit developing engineers by improving product development and team diversity. Engineering culture fosters disengagement with social issues through three pillars: depoliticization, technical/social dualism, and meritocracy. The developed curriculum uses optical illusions and Legos as proxies to start discussions about unconscious bias. The proxies allow engineers to explore their own biases without running into one of the pillars of disengagement that limits the engineer's willingness to discuss social issues. The curriculum was implemented in the Fall of 2017 in an upper-division engineering classroom as a professional communication module. The module received qualitatively positive feedback from fellow instructors and students. The curriculum was only implemented once by the author, but future implementations should be done with a different instructor and using quantitative data to measure if the learning objectives were achieved. Appendix A of the paper contains a lesson plan of the module that could be implemented by other instructors.
Created2017-05
133771-Thumbnail Image.png
Description
Urbanization rapidly alters the environment, leading to a decrease in biodiversity in urban areas. A challenge associated with urbanized areas is the increased heat caused by the urban heat island effect. Heat may have an important impact on arthropods particularly due to their status as ectotherms. Animal behavior reveals how

Urbanization rapidly alters the environment, leading to a decrease in biodiversity in urban areas. A challenge associated with urbanized areas is the increased heat caused by the urban heat island effect. Heat may have an important impact on arthropods particularly due to their status as ectotherms. Animal behavior reveals how individuals interact with their environment. A behavioral syndrome describes consistent individual differences in behaviors that are correlated across different behavioral contexts or situations. Understanding the Western Black Widow's behavioral responses to the urban heat island effect has important implications for the control of a pest species. In this study, the relationship between rising urban temperatures and voracity, web-building, and cannibalism behaviors of juvenile Western Black Widows was examined. Spiders raised in the urban temperature treatment were predicted to have more aggressive behavioral syndromes, characterized by shorter latencies to forage, greater web-building activity, and shorter latencies to cannibalize as compared to spiders raised in rural or intermediate temperature treatments. A correlation between the latency to attack the first fly and second fly was found, however there were no other correlations evidencing a behavioral syndrome. Temperature was found to affect foraging, web-building, and cannibalism behaviors where spiders in urban areas demonstrated increased activity in all behavioral contexts. The possession of behavioral plasticity rather than a behavioral syndrome is likely what allows Black Widows to be successful urban pests.
ContributorsGarver, Emily Elizabeth (Author) / Johnson, James Chadwick (Thesis director) / Foltz-Sweat, Jennifer (Committee member) / Kitchen, Kathryn (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134875-Thumbnail Image.png
Description
Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State

Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State University Palo Verde Main engineering dormitory construction site in December of 2016. The objective of this analysis on craft labor productivity in construction projects was to gather data regarding the efficiency of craft labor workers, make conclusions about the effects of time of day and other site-specific factors on labor productivity, as well as suggest improvements to implement in the construction process. Analysis suggests that supporting tasks, such as traveling or materials handling, constitute the majority of craft labors' efforts on the job site with the highest percentages occurring at the beginning and end of the work day. Direct work and delays were approximately equal at about 20% each hour with the highest peak occurring at lunchtime between 10:00 am and 11:00 am. The top suggestion to improve construction productivity would be to perform an extensive site utilization analysis due to the confined nature of this job site. Despite the limitations of an activity analysis to provide a complete prospective of all the factors that can affect craft labor productivity as well as the small number of days of data acquisition, this analysis provides a basic overview of the productivity at the Palo Verde Main construction site. Through this research, construction managers can more effectively generate site plans and schedules to increase labor productivity.
ContributorsFord, Emily Lucile (Author) / Grau, David (Thesis director) / Chong, Oswald (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134978-Thumbnail Image.png
Description
As inhabitants of a desert, a sustainable water source has always been and will continue to be a crucial component in developing the cities Arizonans call home. Phoenix and the surrounding municipalities make up a large metropolitan area that continues to grow in spatial size and population. However, as climate

As inhabitants of a desert, a sustainable water source has always been and will continue to be a crucial component in developing the cities Arizonans call home. Phoenix and the surrounding municipalities make up a large metropolitan area that continues to grow in spatial size and population. However, as climate change becomes more of an evident challenge, Arizona is forced to plan and make decisions regarding its ability to safely and efficiently maintain its livelihood and/or growth. With the effects of climate change in mind, Arizona will need to continue to innovatively and proactively address issues of water management and the effects of urban heat island (UHI). The objective of this thesis was to study the socioeconomic impacts of four extreme scenarios of the future Phoenix metropolitan area. Each of the scenarios showcased a different hypothetical extreme and uniquely impacted factors related to water management and UHI. The four scenarios were a green city, desert city, expanded city into desert land, and expanded city into agricultural land. These four scenarios were designed to emphasize different aspects of the urban water-energy-population nexus, as the future of the Phoenix metropolitan area is dynamic. Primarily, the Green City and Desert City served as contrasting viewpoints on UHI and water sustainability. The Expanded Cities showed the influence of population growth and land use on water sustainability. The socioeconomic impacts of the four scenarios were then analyzed. The quantitative data of the report was completed using the online user interface of WaterSim 5.0 (a program created by the Decision Center for a Desert City (DCDC) at Arizona State University). The different scenarios were modeled in the program by adjusting various demand and supply oriented factors. The qualitative portion as well as additional quantitative data was acquired through an extensive literature review. It was found that changing land use has direct water use implications; agricultural land overtaken for municipal uses can sustain a population for longer. Though, removing agricultural lands has both social and economic implications, and can actually cause the elimination of an emergency source. Moreover, it was found that outdoor water use and reclaimed wastewater can impact water sustainability. Practices that decrease outdoor water use and increase wastewater reclamation are currently occurring; however, these practices could be augmented. Both practices require changes in the publics' opinions on water use, nevertheless, the technology and policy exists and can be intensified to become more water sustainable. While the scenarios studied were hypothetical cases of the future of the Phoenix metropolitan area, they identified important circumscribing measures and practices that influence the Valley's water resources.
ContributorsVon Gnechten, Rachel Marie (Author) / Wang, Zhihua (Thesis director) / White, Dave (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135977-Thumbnail Image.png
Description
This paper features analysis of interdisciplinary collaboration, based on the results from the Kolbe A™ Index of students in the Nano Ethics at Play (NEAP) class, a four week course in Spring 2015. The Kolbe A™ is a system which describes the Conative Strengths of each student, or their

This paper features analysis of interdisciplinary collaboration, based on the results from the Kolbe A™ Index of students in the Nano Ethics at Play (NEAP) class, a four week course in Spring 2015. The Kolbe A™ is a system which describes the Conative Strengths of each student, or their natural drive and instinct. NEAP utilized the LEGO® SERIOUS PLAY® (LSP) method, which uses abstract LEGO models to describe answers to a proposed question in school or work environments. The models could be described piece by piece to provide clear explanations without allowing disciplinary jargon, which is why the class contained students from eleven different majors (Engineering (Civil, Biomedical, & Electrical), Business (Marketing & Supply Chain Management), Architectural Studies, Sustainability, Anthropology, Communications, Philosophy, & Psychology).

The proposed hypotheses was based on the four different Kolbe A™ strengths, or Action Modes: Fact Finder, Follow Through, Quick Start, and Implementor. Hypotheses were made about class participation and official class twitter use, using #ASUsp, for each Kolbe type. The results proved these hypotheses incorrect, indicating a lack of correlation between Kolbe A™ types and playing. The report also includes qualitative results such as Twitter Keywords and a Sentiment calculation for each week of the course. The class had many positive outcomes, including growth in the ability to collaborate by students, further understanding of how to integrate Twitter use into the classroom, and more knowledge about the effectiveness of LSP.
Created2015-12