Matching Items (6)
152439-Thumbnail Image.png
Description
As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change

As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change (anisotropic for the initial lithiation of crystal silicon), plastic flow or softening of material dependent on composition, electrochemically driven phase transformation between solid states, anisotropic or isotropic migration of atomic sharp interface, and mass diffusion of lithium atoms. Motivated by the promising prospect of the application and underlying interesting physics, mechanics coupled with multi-physics of silicon electrodes in lithium ion batteries is studied in this dissertation. For silicon electrodes with large size, diffusion controlled kinetics is assumed, and the coupled large deformation and mass transportation is studied. For crystal silicon with small size, interface controlled kinetics is assumed, and anisotropic interface reaction is studied, with a geometry design principle proposed. As a preliminary experimental validation, enhanced lithiation and fracture behavior of silicon pillars via atomic layer coatings and geometry design is studied, with results supporting the geometry design principle we proposed based on our simulations. Through the work documented here, a consistent description and understanding of the behavior of silicon electrode is given at continuum level and some insights for the future development of the silicon electrode are provided.
ContributorsAn, Yonghao (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Phelan, Patrick (Committee member) / Wang, Yinming (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2014
149908-Thumbnail Image.png
Description
Programmable Metallization Cell (PMC) is a technology platform which utilizes mass transport in solid or liquid electrolyte coupled with electrochemical (redox) reactions to form or remove nanoscale metallic electrodeposits on or in the electrolyte. The ability to redistribute metal mass and form metallic nanostructure in or on a structure in

Programmable Metallization Cell (PMC) is a technology platform which utilizes mass transport in solid or liquid electrolyte coupled with electrochemical (redox) reactions to form or remove nanoscale metallic electrodeposits on or in the electrolyte. The ability to redistribute metal mass and form metallic nanostructure in or on a structure in situ, via the application of a bias on laterally placed electrodes, creates a large number of promising applications. A novel PMC-based lateral microwave switch was fabricated and characterized for use in microwave systems. It has demonstrated low insertion loss, high isolation, low voltage operation, low power and low energy consumption, and excellent linearity. Due to its non-volatile nature the switch operates with fewer biases and its simple planar geometry makes possible innovative device structures which can be potentially integrated into microwave power distribution circuits. PMC technology is also used to develop lateral dendritic metal electrodes. A lateral metallic dendritic network can be grown in a solid electrolyte (GeSe) or electrodeposited on SiO2 or Si using a water-mediated method. These dendritic electrodes grown in a solid electrolyte (GeSe) can be used to lower resistances for applications like self-healing interconnects despite its relatively low light transparency; while the dendritic electrodes grown using water-mediated method can be potentially integrated into solar cell applications, like replacing conventional Ag screen-printed top electrodes as they not only reduce resistances but also are highly transparent. This research effort also laid a solid foundation for developing dendritic plasmonic structures. A PMC-based lateral dendritic plasmonic structure is a device that has metallic dendritic networks grown electrochemically on SiO2 with a thin layer of surface metal nanoparticles in liquid electrolyte. These structures increase the distribution of particle sizes by connecting pre-deposited Ag nanoparticles into fractal structures and result in three significant effects, resonance red-shift, resonance broadening and resonance enhancement, on surface plasmon resonance for light trapping simultaneously, which can potentially enhance thin film solar cells' performance at longer wavelengths.
ContributorsRen, Minghan (Author) / Kozicki, Michael (Thesis advisor) / Schroder, Dieter (Committee member) / Roedel, Ronald (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2011
151233-Thumbnail Image.png
Description
The electrochemical behavior of nanoscale solids has become an important topic to applications, such as catalysis, sensing, and nano–electronic devices. The electrochemical behavior of elemental metal and alloy particles was studied in this work both theoretically and experimentally. A systematic thermodynamic derivation for the size–dependent Pourbaix Diagram for elemental metal

The electrochemical behavior of nanoscale solids has become an important topic to applications, such as catalysis, sensing, and nano–electronic devices. The electrochemical behavior of elemental metal and alloy particles was studied in this work both theoretically and experimentally. A systematic thermodynamic derivation for the size–dependent Pourbaix Diagram for elemental metal particles is presented. The stability of Pt particles was studied by in situ electrochemical scanning tunneling microscopy (ECSTM). It is shown that small Pt particles dissolve at a lower potential than the corresponding bulk material. For the alloy particles, two size ranges of AuAg particles, ∼4 nm and ∼45 nm in diameter, were synthesized by co–reduction of the salts of Au and Ag from an aqueous phase. The alloy particles were dealloyed at a series of potential by chronoamperometry in acid, and the resulting morphology and composition were characterized by electron microscopy, energy dispersive X–ray spectroscopy (EDX). In the case of the smaller particles, only surface dealloying occurred yielding a core–shell structure. A porous structure was observed for the larger particles when the potential was larger than a critical value that was within 50 mV of the thermodynamic prediction.
ContributorsLi, Xiaoqian (Author) / Sieradzki, Karl (Thesis advisor) / Crozier, Peter (Committee member) / Buttry, Daniel (Committee member) / Friesen, Cody (Committee member) / Arizona State University (Publisher)
Created2012
157064-Thumbnail Image.png
Description
In order to meet climate targets, the solar photovoltaic industry must increase photovoltaic (PV) deployment and cost competitiveness over its business-as-usual trajectory. This requires more efficient PV modules that use less expensive materials, and longer operational lifetime. The work presented here approaches this challenge with a novel metallization method for

In order to meet climate targets, the solar photovoltaic industry must increase photovoltaic (PV) deployment and cost competitiveness over its business-as-usual trajectory. This requires more efficient PV modules that use less expensive materials, and longer operational lifetime. The work presented here approaches this challenge with a novel metallization method for solar PV and electronic devices.

This document outlines work completed to this end. Chapter 1 introduces the areas for cost reductions and improvements in efficiency to drive down the cost per watt of solar modules. Next, in Chapter 2, conventional and advanced metallization methods are reviewed, and our proposed solution of dispense printed reactive inks is introduced. Chapter 3 details a proof of concept study for reactive silver ink as front metallization for solar cells. Furthermore, Chapter 3 details characterization of the optical and electrical properties of reactive silver ink metallization, which is important to understanding the origins of problems related to metallization, enabling approaches to minimize power losses in full devices. Chapter 4 describes adhesion and specific contact resistance of reactive ink metallizations on silicon heterojunction solar cells. Chapter 5 compares performance of silicon heterojunction solar cells with front grids formed from reactive ink metallization and conventional, commercially available metallization. Performance and degradation throughout 1000 h of accelerated environmental exposure are described before detailing an isolated corrosion experiment for different silver-based metallizations. Finally, Chapter 6 summarizes the main contributions of this work.

The major goal of this project is to evaluate potential of a new metallization technique –high-precision dispense printing of reactive inks–to become a high efficiency replacement for solar cell metallization through optical and electrical characterization, evaluation of durability and reliability, and commercialization research. Although this work primarily describes the application of reactive silver inks as front-metallization for silicon heterojunction solar cells, the work presented here provides a framework for evaluation of reactive inks as metallization for various solar cell architectures and electronic devices.
ContributorsJeffries, April M (Author) / Bertoni, Mariana I (Thesis advisor) / Saive, Rebecca (Committee member) / Holman, Zachary (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2019
133764-Thumbnail Image.png
Description
An improved system for wireless neurostimulation was investigated through the design and development of sub-millimeter piezoelectric devices. The devices build on prior work in the lab, which was limited by device size and required surgical implantation. A method of manufacturing sub-mm devices was developed, and utilized to construct this new

An improved system for wireless neurostimulation was investigated through the design and development of sub-millimeter piezoelectric devices. The devices build on prior work in the lab, which was limited by device size and required surgical implantation. A method of manufacturing sub-mm devices was developed, and utilized to construct this new design. The device frequency response was characterized and its resonant modes and output voltages determined through a Fast Fourier Transform. The fundamental thickness mode frequency was found to be 15.4MHz with a corresponding 10.25mV amplitude, and a longitudinal resonant frequency of 3.1Mhz with a corresponding 2.2mV amplitude across a 50Ω resistor. The high miniaturization of the device holds promise for future work for creating an injectable, wireless system for the treatment of neurological disorders.
ContributorsCatchings, Michael Thomas (Author) / Towe, Bruce (Thesis director) / Muthuswamy, Jitendran (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
149342-Thumbnail Image.png
Description
The object of this body of work is to study the properties and suitability of zinc oxide thin films with a view to engineering them for optoelectronics applications, making them a cheap and effective alternative to indium tin oxide (ITO), the most used transparent conducting oxides in the industry. Initially,

The object of this body of work is to study the properties and suitability of zinc oxide thin films with a view to engineering them for optoelectronics applications, making them a cheap and effective alternative to indium tin oxide (ITO), the most used transparent conducting oxides in the industry. Initially, a study was undertaken to examine the behavior of silver contacts to ZnO and ITO during thermal processing, a step frequently used in materials processing in optoelectronics. The second study involved an attempt to improve the conductivity of ZnO films by inserting a thin copper layer between two ZnO layers. The Hall resistivity of the films was as low as 6.9×10-5 -cm with a carrier concentration of 1.2×1022 cm-3 at the optimum copper layer thickness. The physics of conduction in the films has been examined. In order to improve the average visible transmittance, we replaced the copper layer with gold. The films were then found to undergo a seven orders of magnitude drop in effective resistivity from 200 -cm to 5.2×10-5 -cm The films have an average transmittance between 75% and 85% depending upon the gold thickness, and a peak transmittance of up to 93%. The best Haacke figure of merit was 15.1×10-3 . Finally, to test the multilayer transparent electrodes on a device, ZnO/Au/ZnO (ZAZ) electrodes were evaluated as transparent electrodes for organic light-emitting devices (OLEDs). The electrodes exhibited substantially enhanced conductivity (about 8×10-5 -cm) over conventional indium tin oxide (ITO) electrodes (about 3.2×10-5 -cm). OLEDs fabricated with the ZAZ electrodes showed reduced leakage compared to control OLEDs on ITO and reduced ohmic losses at high current densities. At a luminance of 25000 cd/m2, the lum/W efficiency of the ZAZ electrode based device improved by 5% compared to the device on ITO. A normalized intensity graph of the colour output from the green OLEDs shows that ZAZ electrodes allow for a broader spectral output in the green wavelength region of peak photopic sensitivity compared to ITO. The results have implications for electrode choice in display technology.
ContributorsSivaramakrishnan, Karthik (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter K. (Committee member) / Newman, Nathan (Committee member) / Theodore, David N (Committee member) / Arizona State University (Publisher)
Created2010