Matching Items (4)
Filtering by

Clear all filters

156373-Thumbnail Image.png
Description
Public mass shootings occur at a rate in the U.S. that is higher than any other developed country. These event initiate wide spread media attention. The media attention these events achieve have shown to impact the public behavior (e.g., increased firearm sales). However, the impact public mass shootings have on

Public mass shootings occur at a rate in the U.S. that is higher than any other developed country. These event initiate wide spread media attention. The media attention these events achieve have shown to impact the public behavior (e.g., increased firearm sales). However, the impact public mass shootings have on firearm storage and carry habits of the public is not well understood. Using data collected from the Transportation Security Administration, this study examines how mass shootings have led to moral panics occurring within the U.S. through the examination of the firearm carrying habits among the population immediately following mass shootings. The results indicate that loaded firearms with rounds in the chamber detected by the TSA have significantly increased since 2012. Further, firearms detected immediately following a public mass shooting had a higher proportion of firearms loaded with a round in the chamber relative to 7 days prior to the shooting. Moreover, the increase in proportions of firearms found loaded with a round in the chamber exponentially decays as days past the initial shooting, these events occur at a higher rate than the decay rate can normalize these occurrences. I conclude that in the wake of these shootings a moral panic ensues that is partially responsible for the change in the general public’s arming configuration habits. Further research is needed in to determine the impact on crime, and public health related issues due to this change in the public’s firearm carrying habits.
ContributorsCordova, Richard Donald (Author) / Reisig, Michael (Thesis advisor) / Towers, Sherry (Committee member) / Wang, Xia (Committee member) / Holtfreter, Kristy (Committee member) / Arizona State University (Publisher)
Created2018
Description

This thesis presents the design and simulation of an energy efficient controller for a system of three drones transporting a payload in a net. The object ensnared in the net is represented as a mass connected by massless stiff springs to each drone. Both a pole-placement approach and an optimal

This thesis presents the design and simulation of an energy efficient controller for a system of three drones transporting a payload in a net. The object ensnared in the net is represented as a mass connected by massless stiff springs to each drone. Both a pole-placement approach and an optimal control approach are used to design a trajectory controller for the system. Results are simulated for a single drone and the three drone system both without and with payload.

ContributorsHayden, Alexander (Author) / Grewal, Anoop (Thesis director) / Berman, Spring (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2022-05
171848-Thumbnail Image.png
Description
Multi-segment manipulators and mobile robot collectives are examples of multi-agent robotic systems, in which each segment or robot can be considered an agent. Fundamental motion control problems for such systems include the stabilization of one or more agents to target configurations or trajectories while preventing inter-agent collisions, agent collisions with

Multi-segment manipulators and mobile robot collectives are examples of multi-agent robotic systems, in which each segment or robot can be considered an agent. Fundamental motion control problems for such systems include the stabilization of one or more agents to target configurations or trajectories while preventing inter-agent collisions, agent collisions with obstacles, and deadlocks. Despite extensive research on these control problems, there are still challenges in designing controllers that (1) are scalable with the number of agents; (2) have theoretical guarantees on collision-free agent navigation; and (3) can be used when the states of the agents and the environment are only partially observable. Existing centralized and distributed control architectures have limited scalability due to their computational complexity and communication requirements, while decentralized control architectures are often effective only under impractical assumptions that do not hold in real-world implementations. The main objective of this dissertation is to develop and evaluate decentralized approaches for multi-agent motion control that enable agents to use their onboard sensors and computational resources to decide how to move through their environment, with limited or absent inter-agent communication and external supervision. Specifically, control approaches are designed for multi-segment manipulators and mobile robot collectives to achieve position and pose (position and orientation) stabilization, trajectory tracking, and collision and deadlock avoidance. These control approaches are validated in both simulations and physical experiments to show that they can be implemented in real-time while remaining computationally tractable. First, kinematic controllers are proposed for position stabilization and trajectory tracking control of two- or three-dimensional hyper-redundant multi-segment manipulators. Next, robust and gradient-based feedback controllers are presented for individual holonomic and nonholonomic mobile robots that achieve position stabilization, trajectory tracking control, and obstacle avoidance. Then, nonlinear Model Predictive Control methods are developed for collision-free, deadlock-free pose stabilization and trajectory tracking control of multiple nonholonomic mobile robots in known and unknown environments with obstacles, both static and dynamic. Finally, a feedforward proportional-derivative controller is defined for collision-free velocity tracking of a moving ground target by multiple unmanned aerial vehicles.
ContributorsSalimi Lafmejani, Amir (Author) / Berman, Spring (Thesis advisor) / Tsakalis, Konstantinos (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2022
154271-Thumbnail Image.png
Description
The 2009-10 influenza and the 2014-15 Ebola pandemics brought once again urgency to an old question: What are the limits on prediction and what can be proposed that is useful in the face of an epidemic outbreak?

This thesis looks first at the impact that limited access to vaccine

The 2009-10 influenza and the 2014-15 Ebola pandemics brought once again urgency to an old question: What are the limits on prediction and what can be proposed that is useful in the face of an epidemic outbreak?

This thesis looks first at the impact that limited access to vaccine stockpiles may have on a single influenza outbreak. The purpose is to highlight the challenges faced by populations embedded in inadequate health systems and to identify and assess ways of ameliorating the impact of resource limitations on public health policy.

Age-specific per capita constraint rates play an important role on the dynamics of communicable diseases and, influenza is, of course, no exception. Yet the challenges associated with estimating age-specific contact rates have not been decisively met. And so, this thesis attempts to connect contact theory with age-specific contact data in the context of influenza outbreaks in practical ways. In mathematical epidemiology, proportionate mixing is used as the preferred theoretical mixing structure and so, the frame of discussion of this dissertation follows this specific theoretical framework. The questions that drive this dissertation, in the context of influenza dynamics, proportionate mixing, and control, are:

I. What is the role of age-aggregation on the dynamics of a single outbreak? Or simply speaking, does the number and length of the age-classes used to model a population make a significant difference on quantitative predictions?

II. What would the age-specific optimal influenza vaccination policies be? Or, what are the age-specific vaccination policies needed to control an outbreak in the presence of limited or unlimited vaccine stockpiles?

Intertwined with the above questions are issues of resilience and uncertainty including, whether or not data collected on mixing (by social scientists) can be used effectively to address both questions in the context of influenza and proportionate mixing. The objective is to provide answers to these questions by assessing the role of aggregation (number and length of age classes) and model robustness (does the aggregation scheme selected makes a difference on influenza dynamics and control) via comparisons between purely data-driven model and proportionate mixing models.
ContributorsMorales, Romarie (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Mubayi, Anuj (Thesis advisor) / Towers, Sherry (Committee member) / Arizona State University (Publisher)
Created2016