Matching Items (1)

133732-Thumbnail Image.png

Classication for Conservation: A Random Forest Model to Predict Threatened Marine Species

Description

As threats to Earth's biodiversity continue to evolve, an effective methodology to predict such threats is crucial to ensure the survival of living species. Organizations like the International Union for Conservation of Nature (IUCN) monitor the Earth's environmental networks to

As threats to Earth's biodiversity continue to evolve, an effective methodology to predict such threats is crucial to ensure the survival of living species. Organizations like the International Union for Conservation of Nature (IUCN) monitor the Earth's environmental networks to preserve the sanctity of terrestrial and marine life. The IUCN Red List of Threatened Species informs the conservation activities of governments as a world standard of species' risks of extinction. However, the IUCN's current methodology is, in some ways, inefficient given the immense volume of Earth's species and the laboriousness of its species' risk classification process. IUCN assessors can take years to classify a species' extinction risk, even as that species continues to decline. Therefore, to supplement the IUCN's classification process and thus bolster conservationist efforts for threatened species, a Random Forest model was constructed, trained on a group of fish species previously classified by the IUCN Red List. This Random Forest model both validates the IUCN Red List's classification method and offers a highly efficient, supplemental classification method for species' extinction risk. In addition, this Random Forest model is applicable to species with deficient data, which the IUCN Red List is otherwise unable to classify, thus engendering conservationist efforts for previously obscure species. Although this Random Forest model is built specifically for the trained fish species (Sparidae), the methodology can and should be extended to additional species.

Contributors

Created

Date Created
2018-05