Matching Items (7)
Filtering by

Clear all filters

149885-Thumbnail Image.png
Description
The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I (PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that is utilized as a driving force for photosynthesis. However, excess light energy may lead to formation of reactive

The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I (PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that is utilized as a driving force for photosynthesis. However, excess light energy may lead to formation of reactive oxygen species that cause damage to photosynthetic complexes, which subsequently need repair or replacement. To gain insight in the degradation/biogenesis dynamics of the photosystems, the lifetimes of photosynthetic proteins and chlorophyll were determined by a combined stable-isotope (15N) and mass spectrometry method. The lifetimes of PSII and PSI proteins ranged from 1-33 and 30-75 hours, respectively. Interestingly, chlorophyll had longer lifetimes than the chlorophyll-binding proteins in these photosystems. Therefore, photosynthetic proteins turn over and are replaced independently from each other, and chlorophyll is recycled from the damaged chlorophyll-binding proteins. In Synechocystis, there are five small Cab-like proteins (SCPs: ScpA-E) that share chlorophyll a/b-binding motifs with LHC proteins in plants. SCPs appear to transiently bind chlorophyll and to regulate chlorophyll biosynthesis. In this study, the association of ScpB, ScpC, and ScpD with damaged and repaired PSII was demonstrated. Moreover, in a mutant lacking SCPs, most PSII protein lifetimes were unaffected but the lifetime of chlorophyll was decreased, and one of the nascent PSII complexes was missing. SCPs appear to bind PSII chlorophyll while PSII is repaired, and SCPs stabilize nascent PSII complexes. Furthermore, aminolevulinic acid biosynthesis, an early step of chlorophyll biosynthesis, was impaired in the absence of SCPs, so that the amount of chlorophyll in the cells was reduced. Finally, a deletion mutation was introduced into the sll1906 gene, encoding a member of the putative bacteriochlorophyll delivery (BCD) protein family. The Sll1906 sequence contains possible chlorophyll-binding sites, and its homolog in purple bacteria functions in proper assembly of light-harvesting complexes. However, the sll1906 deletion did not affect chlorophyll degradation/biosynthesis and photosystem assembly. Other (parallel) pathways may exist that may fully compensate for the lack of Sll1906. This study has highlighted the dynamics of photosynthetic complexes in their biogenesis and turnover and the coordination between synthesis of chlorophyll and photosynthetic proteins.
ContributorsYao, Cheng I Daniel (Author) / Vermaas, Wim (Thesis advisor) / Fromme, Petra (Committee member) / Roberson, Robert (Committee member) / Webber, Andrew (Committee member) / Arizona State University (Publisher)
Created2011
154121-Thumbnail Image.png
Description
Photosystem II (PSII) is a large protein-cofactor complex. The first step in

photosynthesis involves the harvesting of light energy from the sun by the antenna (made

of pigments) of the PSII trans-membrane complex. The harvested excitation energy is

transferred from the antenna complex to the reaction center of the PSII, which leads to

Photosystem II (PSII) is a large protein-cofactor complex. The first step in

photosynthesis involves the harvesting of light energy from the sun by the antenna (made

of pigments) of the PSII trans-membrane complex. The harvested excitation energy is

transferred from the antenna complex to the reaction center of the PSII, which leads to a

light-driven charge separation event, from water to plastoquinone. This phenomenal

process has been producing the oxygen that maintains the oxygenic environment of our

planet for the past 2.5 billion years.

The oxygen molecule formation involves the light-driven extraction of 4 electrons

and protons from two water molecules through a multistep reaction, in which the Oxygen

Evolving Center (OEC) of PSII cycles through 5 different oxidation states, S0 to S4.

Unraveling the water-splitting mechanism remains as a grant challenge in the field of

photosynthesis research. This requires the development of an entirely new capability, the

ability to produce molecular movies. This dissertation advances a novel technique, Serial

Femtosecond X-ray crystallography (SFX), into a new realm whereby such time-resolved

molecular movies may be attained. The ultimate goal is to make a “molecular movie” that

reveals the dynamics of the water splitting mechanism using time-resolved SFX (TRSFX)

experiments and the uniquely enabling features of X-ray Free-Electron Laser

(XFEL) for the study of biological processes.

This thesis presents the development of SFX techniques, including development of

new methods to analyze millions of diffraction patterns (~100 terabytes of data per XFEL

experiment) with the goal of solving the X-ray structures in different transition states.

ii

The research comprises significant advancements to XFEL software packages (e.g.,

Cheetah and CrystFEL). Initially these programs could evaluate only 8-10% of all the

data acquired successfully. This research demonstrates that with manual optimizations,

the evaluation success rate was enhanced to 40-50%. These improvements have enabled

TR-SFX, for the first time, to examine the double excited state (S3) of PSII at 5.5-Å. This

breakthrough demonstrated the first indication of conformational changes between the

ground (S1) and the double-excited (S3) states, a result fully consistent with theoretical

predictions.

The power of the TR-SFX technique was further demonstrated with proof-of principle

experiments on Photoactive Yellow Protein (PYP) micro-crystals that high

temporal (10-ns) and spatial (1.5-Å) resolution structures could be achieved.

In summary, this dissertation research heralds the development of the TR-SFX

technique, protocols, and associated data analysis methods that will usher into practice a

new era in structural biology for the recording of ‘molecular movies’ of any biomolecular

process.
ContributorsBasu, Shibom, 1988- (Author) / Fromme, Petra (Thesis advisor) / Spence, John C.H. (Committee member) / Wolf, George (Committee member) / Ros, Robert (Committee member) / Fromme, Raimund (Committee member) / Arizona State University (Publisher)
Created2015
152968-Thumbnail Image.png
Description
Membrane proteins are a vital part of cellular structure. They are directly involved in many important cellular functions, such as uptake, signaling, respiration, and photosynthesis, among others. Despite their importance, however, less than 500 unique membrane protein structures have been determined to date. This is due to several difficulties with

Membrane proteins are a vital part of cellular structure. They are directly involved in many important cellular functions, such as uptake, signaling, respiration, and photosynthesis, among others. Despite their importance, however, less than 500 unique membrane protein structures have been determined to date. This is due to several difficulties with macromolecular crystallography, primarily the difficulty of growing large, well-ordered protein crystals. Since the first proof of concept for femtosecond nanocrystallography showing that diffraction patterns can be collected on extremely small crystals, thus negating the need to grow larger crystals, there have been many exciting advancements in the field. The technique has been proven to show high spatial resolution, thus making it a viable method for structural biology. However, due to the ultrafast nature of the technique, which allows for a lack of radiation damage in imaging, even more interesting experiments are possible, and the first temporal and spatial images of an undamaged structure could be acquired. This concept was denoted as time-resolved femtosecond nanocrystallography.

This dissertation presents on the first time-resolved data set of Photosystem II where structural changes can actually be seen without radiation damage. In order to accomplish this, new crystallization techniques had to be developed so that enough crystals could be made for the liquid jet to deliver a fully hydrated stream of crystals to the high-powered X-ray source. These changes are still in the preliminary stages due to the slightly lower resolution data obtained, but they are still a promising show of the power of this new technique. With further optimization of crystal growth methods and quality, injection technique, and continued development of data analysis software, it is only a matter of time before the ability to make movies of molecules in motion from X-ray diffraction snapshots in time exists. The work presented here is the first step in that process.
ContributorsKupitz, Christopher (Author) / Fromme, Petra (Thesis advisor) / Spence, John C. (Thesis advisor) / Redding, Kevin (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2014
153166-Thumbnail Image.png
Description
ABSTRACT

X-Ray crystallography and NMR are two major ways of achieving atomic

resolution of structure determination for macro biomolecules such as proteins. Recently, new developments of hard X-ray pulsed free electron laser XFEL opened up new possibilities to break the dilemma of radiation dose and spatial resolution in diffraction imaging by outrunning

ABSTRACT

X-Ray crystallography and NMR are two major ways of achieving atomic

resolution of structure determination for macro biomolecules such as proteins. Recently, new developments of hard X-ray pulsed free electron laser XFEL opened up new possibilities to break the dilemma of radiation dose and spatial resolution in diffraction imaging by outrunning radiation damage with ultra high brightness femtosecond X-ray pulses, which is so short in time that the pulse terminates before atomic motion starts. A variety of experimental techniques for structure determination of macro biomolecules is now available including imaging of protein nanocrystals, single particles such as viruses, pump-probe experiments for time-resolved nanocrystallography, and snapshot wide- angle x-ray scattering (WAXS) from molecules in solution. However, due to the nature of the "diffract-then-destroy" process, each protein crystal would be destroyed once

probed. Hence a new sample delivery system is required to replenish the target crystal at a high rate. In this dissertation, the sample delivery systems for the application of XFELs to biomolecular imaging will be discussed and the severe challenges related to the delivering of macroscopic protein crystal in a stable controllable way with minimum waste of sample and maximum hit rate will be tackled with several different development of injector designs and approaches. New developments of the sample delivery system such as liquid mixing jet also opens up new experimental methods which gives opportunities to study of the chemical dynamics in biomolecules in a molecular structural level. The design and characterization of the system will be discussed along with future possible developments and applications. Finally, LCP injector will be discussed which is critical for the success in various applications.
ContributorsWang, Dingjie (Author) / Spence, John CH (Thesis advisor) / Weierstall, Uwe (Committee member) / Schmidt, Kevin (Committee member) / Fromme, Petra (Committee member) / Ozkan, Banu (Committee member) / Arizona State University (Publisher)
Created2014
158733-Thumbnail Image.png
Description
Borrelia burgdorferi (Bb), the causative agent of Lyme disease, is a unique pathogen, with a complex genome and unique immune evasion tactics. It lacks genes encoding proteins involved in nutrient synthesis and typical metabolic pathways, and therefore relies on the host for nutrients. The Bb genome encodes both an unusually

Borrelia burgdorferi (Bb), the causative agent of Lyme disease, is a unique pathogen, with a complex genome and unique immune evasion tactics. It lacks genes encoding proteins involved in nutrient synthesis and typical metabolic pathways, and therefore relies on the host for nutrients. The Bb genome encodes both an unusually high number of predicted outer surface lipoproteins of unknown function but with multiple complex roles in pathogenesis, and an unusually low number of predicted outer membrane proteins, given the necessity of bringing in the required nutrients for pathogen survival. Cellular processing of bacterial membrane proteins is complex, and structures of proteins from Bb have all been solved without the N-terminal signal sequence that directs the protein to proper folding and placement in the membrane. This dissertation presents the first membrane-directed expression in E. coli of several Bb proteins involved in the pathogenesis of Lyme disease. For the first time, I present evidence that the predicted lipoprotein, BBA57, forms a large alpha-helical homo-multimeric complex in the OM, is soluble in several detergents, and purifiable. The purified BBA57 complex forms homogeneous, 10 nm-diameter particles, visible by negative stain electron microscopy. Two-dimensional class averages from negative stain images reveal the first low-resolution particle views, comprised of a ring of subunits with a plug on top, possibly forming a porin or channel. These results provide the first evidence to support our theories that some of the predicted lipoproteins in Bb form integral-complexes in the outer membrane, and require proper membrane integration to form functional proteins.
ContributorsRobertson, Karie (Author) / Hansen, Debra T. (Thesis advisor) / Fromme, Petra (Thesis advisor) / Van Horn, Wade (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2020
157795-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) uses diffraction patterns from crystals delivered in a serial fashion to an X-Ray Free Electron Laser (XFEL) for structure determination. Typically, each diffraction pattern is a snapshot from a different crystal. SFX limits the effect of radiation damage and enables the use of nano/micro crystals for

Serial femtosecond crystallography (SFX) uses diffraction patterns from crystals delivered in a serial fashion to an X-Ray Free Electron Laser (XFEL) for structure determination. Typically, each diffraction pattern is a snapshot from a different crystal. SFX limits the effect of radiation damage and enables the use of nano/micro crystals for structure determination. However, analysis of SFX data is challenging since each snapshot is processed individually.

Many photosystem II (PSII) dataset have been collected at XFELs, several of which are time-resolved (containing both dark and laser illuminated frames). Comparison of light and dark datasets requires understanding systematic errors that can be introduced during data analysis. This dissertation describes data analysis of PSII datasets with a focus on the effect of parameters on later results. The influence of the subset of data used in the analysis is also examined and several criteria are screened for their utility in creating better subsets of data. Subsets are compared with Bragg data analysis and continuous diffuse scattering data analysis.

A new tool, DatView aids in the creation of subsets and visualization of statistics. DatView was developed to improve the loading speed to visualize statistics of large SFX datasets and simplify the creation of subsets based on the statistics. It combines the functionality of several existing visualization tools into a single interface, improving the exploratory power of the tool. In addition, it has comparison features that allow a pattern-by-pattern analysis of the effect of processing parameters. \emph{DatView} improves the efficiency of SFX data analysis by reducing loading time and providing novel visualization tools.
ContributorsStander, Natasha (Author) / Fromme, Petra (Thesis advisor) / Zatsepin, Nadia (Thesis advisor) / Kirian, Richard (Committee member) / Liu, Wei (Committee member) / Arizona State University (Publisher)
Created2019
158245-Thumbnail Image.png
Description
This thesis focuses on serial crystallography studies with X-ray free electron lasers

(XFEL) with a special emphasis on data analysis to investigate important processes

in bioenergy conversion and medicinal applications.

First, the work on photosynthesis focuses on time-resolved femtosecond crystallography

studies of Photosystem II (PSII). The structural-dynamic studies of the water

splitting reaction centering on

This thesis focuses on serial crystallography studies with X-ray free electron lasers

(XFEL) with a special emphasis on data analysis to investigate important processes

in bioenergy conversion and medicinal applications.

First, the work on photosynthesis focuses on time-resolved femtosecond crystallography

studies of Photosystem II (PSII). The structural-dynamic studies of the water

splitting reaction centering on PSII is a current hot topic of interest in the field, the

goal of which is to capture snapshots of the structural changes during the Kok cycle.

This thesis presents results from time-resolved serial femtosecond (fs) crystallography

experiments (TR-SFX) where data sets are collected at room temperature from a

stream of crystals that intersect with the ultrashort femtosecond X-ray pulses at an

XFEL with the goal to obtain structural information from the transient state (S4)

state of the cycle where the O=O bond is formed, and oxygen is released. The most

current techniques available in SFX/TR-SFX to handle hundreds of millions of raw

diffraction patterns are discussed, including selection of the best diffraction patterns,

allowing for their indexing and further data processing. The results include two 4.0 Å

resolution structures of the ground S1 state and triple excited S4 transient state.

Second, this thesis reports on the first international XFEL user experiments in

South Korea at the Pohang Accelerator Laboratory (PAL-XFEL). The usability of this

new XFEL in a proof-of-principle experiment for the study of microcrystals of human

taspase1 (an important cancer target) by SFX has been tested. The descriptions of

experiments and discussions of specific data evaluation challenges of this project in

light of the taspase1 crystals’ high anisotropy, which limited the resolution to 4.5 Å,

are included in this report

In summary, this thesis examines current techniques that are available in the

SFX/TR-SFX domain to study crystal structures from microcrystals damage-free,

with the future potential of making movies of biological processes.
ContributorsKetawala, Gihan Kaushyal (Author) / Fromme, Petra (Thesis advisor) / Liu, Wei (Committee member) / Kirian, Richard (Committee member) / Arizona State University (Publisher)
Created2020