Matching Items (15)
Filtering by

Clear all filters

148174-Thumbnail Image.png
Description

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment that has gained popularity is biochar—a porous, carbon-based substance produced through pyrolysis of biomass in an oxygen-free environment. Arizona State University’s Engineering Projects in Community Service (EPICS) has partnered with communities in Nepal in an attempt to increase biochar production in the area, as it has several valuable applications including water treatment. Biochar’s arsenic adsorption capability will be investigated in this project with the goal of using the biochar that Nepalese communities produce to remove water contaminants. It has been found in scientific literature that biochar is effective in removing heavy metal contaminants from water with the addition of iron through surface activation. Thus, the specific goal of this research was to compare the arsenic adsorption disparity between raw biochar and iron-impregnated biochar. It was hypothesized that after numerous bed volumes pass through a water treatment column, iron from the source water will accumulate on the surface of raw biochar, mimicking the intentionally iron-impregnated biochar and further increasing contaminant uptake. It is thus an additional goal of this project to compare biochar loaded with iron through an iron-spiked water column and biochar impregnated with iron through surface oxidation. For this investigation, the biochar was crushed and sieved to a size between 90 and 100 micrometers. Two samples were prepared: raw biochar and oxidized biochar. The oxidized biochar was impregnated with iron through surface oxidation with potassium permanganate and iron loading. Then, X-ray fluorescence was used to compare the composition of the oxidized biochar with its raw counterpart, indicating approximately 0.5% iron in the raw and 1% iron in the oxidized biochar. The biochar samples were then added to batches of arsenic-spiked water at iron to arsenic concentration ratios of 20 mg/L:1 mg/L and 50 mg/L:1 mg/L to determine adsorption efficiency. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated an 86% removal of arsenic using a 50:1 ratio of iron to arsenic (1.25 g biochar required in 40 mL solution), and 75% removal with a 20:1 ratio (0.5 g biochar required in 40 mL solution). Additional samples were then inserted into a column process apparatus for further adsorption analysis. Again, ICP-MS analysis was performed and the results showed that while both raw and treated biochars were capable of adsorbing arsenic, they were exhausted after less than 70 bed volumes (234 mL), with raw biochar lasting 60 bed volumes (201 mL) and oxidized about 70 bed volumes (234 mL). Further research should be conducted to investigate more affordable and less laboratory-intensive processes to prepare biochar for water treatment.

ContributorsLaird, Ashlyn (Author) / Schoepf, Jared (Thesis director) / Westerhoff, Paul (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150327-Thumbnail Image.png
Description
This dissertation presents a systematic study of the sorption mechanisms of hydrophobic silica aerogel (Cabot Nanogel®) granules for oil and volatile organic compounds (VOCs) in different phases. The performance of Nanogel for removing oil from laboratory synthetic oil-in-water emulsions and real oily wastewater, and VOCs from their aqueous solution, in

This dissertation presents a systematic study of the sorption mechanisms of hydrophobic silica aerogel (Cabot Nanogel®) granules for oil and volatile organic compounds (VOCs) in different phases. The performance of Nanogel for removing oil from laboratory synthetic oil-in-water emulsions and real oily wastewater, and VOCs from their aqueous solution, in both packed bed (PB) and inverse fluidized bed (IFB) modes was also investigated. The sorption mechanisms of VOCs in the vapor, pure liquid, and aqueous solution phases, free oil, emulsified oil, and oil from real wastewater on Nanogel were systematically studied via batch kinetics and equilibrium experiments. The VOC results show that the adsorption of vapor is very slow due to the extremely low thermal conductivity of Nanogel. The faster adsorption rates in the liquid and solution phases are controlled by the mass transport, either by capillary flow or by vapor diffusion/adsorption. The oil results show that Nanogel has a very high capacity for adsorption of pure oils. However, the rate for adsorption of oil from an oil-water emulsion on the Nanogel is 5-10 times slower than that for adsorption of pure oils or organics from their aqueous solutions. For an oil-water emulsion, the oil adsorption capacity decreases with an increasing proportion of the surfactant added. An even lower sorption capacity and a slower sorption rate were observed for a real oily wastewater sample due to the high stability and very small droplet size of the wastewater. The performance of Nanogel granules for removing emulsified oil, oil from real oily wastewater, and toluene at low concentrations in both PB and IFB modes was systematically investigated. The hydrodynamics characteristics of the Nanogel granules in an IFB were studied by measuring the pressure drop and bed expansion with superficial water velocity. The density of the Nanogel granules was calculated from the plateau pressure drop of the IFB. The oil/toluene removal efficiency and the capacity of the Nanogel granules in the PB or IFB were also measured experimentally and predicted by two models based on equilibrium and kinetic batch measurements of the Nanogel granules.
ContributorsWang, Ding (Author) / Lin, Jerry Y.S. (Thesis advisor) / Pfeffer, Robert (Thesis advisor) / Westerhoff, Paul (Committee member) / Nielsen, David (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2011
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose.

Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose. However, styrene becomes toxic to E. coli above concentrations of 300 mg/L, severely limiting the large-scale applicability of the pathway. Thus, styrene must somehow be continuously removed from the system to facilitate higher yields and for the purposes of scale-up. The separation methods of pervaporation and solvent extraction were investigated to this end. Furthermore, the styrene pathway was extended by one step to produce styrene oxide, which is less volatile than styrene and theoretically simpler to recover. Adsorption of styrene oxide using the hydrophobic resin L-493 was attempted in order to improve the yield of styrene oxide and to provide additional proof of concept that the flux through the styrene pathway can be increased. The maximum styrene titer achieved was 1.2 g/L using the method of solvent extraction, but this yield was only possible when additional phenylalanine was supplemented to the system.
ContributorsMcDaniel, Matthew Cary (Author) / Nielsen, David (Thesis director) / Lind, Mary Laura (Committee member) / McKenna, Rebekah (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
137240-Thumbnail Image.png
Description
The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry

The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry to separate compounds, often organics from air and water. Styrene oxide adsorption runs without E. coli were conducted at concentrations ranging from 0.15 to 3.00 g/L with resin masses ranging from 0.1 to 0.5 g of Dowex Optipore L-493 and 0.5 to 0.75 g of mesoporous carbon adsorbent. Runs were conducted on a shake plate operating at 80 rpm for 24 hours at ambient temperature. Isotherms were developed from the results and then adsorption experiments with E. coli and L-493 were performed. Runs were conducted at glucose concentrations ranging from 20-40 g/L and resin masses of 0.100 g to 0.800 g. Samples were incubated for 72 hours and styrene oxide production was measured using an HPLC device. Specific loading values reached up to 0.356 g/g for runs without E. coli and nearly 0.003 g of styrene oxide was adsorbed by L-493 during runs with E. coli. Styrene oxide production was most effective at low resin masses and medium glucose concentrations when produced by E. coli.
ContributorsHsu, Joshua (Co-author) / Oremland, Zachary (Co-author) / Nielsen, David (Thesis director) / Staggs, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
133605-Thumbnail Image.png
Description
Carbon capture is an essential way to reduce greenhouse gas emissions. One way to decrease the emissions is through the use of adsorbents such as zeolites. Dr. Dong-Kyun Seo’s group (School of Molecular Sciences, Arizona State University) synthesized the nanostructured faujasite (NaX). The zeolite was characterized using Scanning Electron Microscopy

Carbon capture is an essential way to reduce greenhouse gas emissions. One way to decrease the emissions is through the use of adsorbents such as zeolites. Dr. Dong-Kyun Seo’s group (School of Molecular Sciences, Arizona State University) synthesized the nanostructured faujasite (NaX). The zeolite was characterized using Scanning Electron Microscopy (SEM) and the physisorption properties were determined using ASAP 2020. ASAP 2020 tests of the nano-zeolite pellets at 77K in a liquid N2 bath determined the BET surface area of 547.1 m2/mol, T-plot micropore volume of 0.2257 cm3/g, and an adsorption average pore width of 5.9 Å. The adsorption isotherm (equilibrium) of CH4, N2, and CO2 were measured at 25ºC. Adsorption isotherm experiments concluded that the linear isotherm was the best fit for N2, and CH4 and the Sips isotherm was a better fit than the Langmuir and Freundlich isotherm for CO2. At 25ºC and 1 atm the zeolite capacity for CO2 is 4.3339 mmol/g, 0.1948 mmol/g for CH4, and 0.3534 mmol/g for N2. The zeolite has a higher CO2 capacity than the conventional NaX zeolite. Breakthrough experiments were performed in a fixed bed 22in, 0.5 in packing height and width at 1 atm and 298 K with nano-zeolite pellets. The gas chromatographer tested and recorded the data every two minutes with a flow rate of 10 cm3/min for N2 and 10 cm3/min CO2. Breakthrough simulations of the zeolite in a fixed bed adsorber column were conducted on MATLAB utilizing varying pressures, flow rates, and fed ratios of various CO2, N2 and CH4. Simulations using ideal adsorbed solution theory (IAST) calculations determined that the selectivity of CO2 in flue gas (15% CO2 + 85% N2) is 571.79 at 1 MPa, significantly higher than commercial zeolites and literature. The nanostructured faujasite zeolite appears to be a very promising adsorbent for CO2/N2 capture from flue gas and the separation of CO2/N2.
ContributorsClark, Krysta D. (Author) / Deng, Shuguang (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
171723-Thumbnail Image.png
Description
Plastics, when released into the environment, undergo surface weathering due to mechanical abrasion and ultraviolet (UV) exposure that leads to the formation of microplastics. Weathering also introduces oxygen functional groups on the surface, which will affect surface interactions compared to pristine plastics. In this study, the adsorption of selected model

Plastics, when released into the environment, undergo surface weathering due to mechanical abrasion and ultraviolet (UV) exposure that leads to the formation of microplastics. Weathering also introduces oxygen functional groups on the surface, which will affect surface interactions compared to pristine plastics. In this study, the adsorption of selected model contaminants of high environmental relevance was evaluated at different level of abiotic and biotic transformation to understand how microplastics aging influences contaminant adsorption on high density polyethylene (HDPE) and polypropylene (PPE). Microplastics were aged through an accelerated weathering process using UV exposure with or without hydrogen peroxide. The effect of UV aging on the microplastics’ morphology and surface chemistry was characterized by Fourier Transform Infrared Spectroscopy, X-Ray Photoelectron Spectroscopy, streaming Zeta potential, Brunauer–Emmett–Teller Krypton adsorption analyses and Computed X-Ray Tomography. Sorption of organic contaminants was found to be higher on aged microplastics compared to pristine ones for all contaminants investigated. This increase in sorption affinity was found to be associated with a change in the surface chemistry and not in an increase in specific surface area after aging. Biological surface weathering (i.e., biofilm formation) was carried out at a lab-scale setting using model biofilm-forming bacteria followed by adsorption affinity measurement of biofilm-laden microplastics with the model organic contaminants. The amount of microbial biomass accumulated on the surface was also evaluated to correlate the changes in sorption affinity with the change in microplastic biofilm formation. The results of this study emphasize the need to understand how contaminant-microplastics interactions will evolve as microplastics are altered by biotic and abiotic factors in the environment.
ContributorsBhagat, Kartik (Author) / Perreault, Francois (Thesis advisor) / Westerhoff, Paul (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022
164865-Thumbnail Image.png
Description

The project goal is aimed to research the most pressing issues facing the lithium supply chain today. It then is tasked with charting a path into the future through strategic recommendations that will help reduce risk, and make a greener, cleaner, and more ethical supply chain.

ContributorsLeeson, Van (Author) / Kelman, Jonathan (Thesis director) / Wiedmer, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Department of Supply Chain Management (Contributor)
Created2022-05
187602-Thumbnail Image.png
Description
Anthropogenic processes have increased the concentration of toxic Se, As and N in water. Oxo-anions of these species are poisonous to aquatic and terrestrial life. Current remediation techniques have low selectivity towards their removal. Understanding the chemistry and physics which control oxo-anion adsorption on metal oxide and the catalytic nitrate

Anthropogenic processes have increased the concentration of toxic Se, As and N in water. Oxo-anions of these species are poisonous to aquatic and terrestrial life. Current remediation techniques have low selectivity towards their removal. Understanding the chemistry and physics which control oxo-anion adsorption on metal oxide and the catalytic nitrate reduction to inform improved remediation technologies can be done using Density functional theory (DFT) calculations. The adsorption of selenate, selenite, and arsenate was investigated on the alumina and hematite to inform sorbent design strategies. Adsorption energies were calculated as a function of surface structure, composition, binding motif, and pH within a hybrid implicit-explicit solvation strategy. Correlations between surface property descriptors including water network structure, cationic species identity, and facet and the adsorption energies of the ions show that the surface water network controls the adsorption energy more than any other, including the cationic species of the metal-oxide. Additionally, to achieve selectivity for selenate over sulphate, differences in their electronic structure must be exploited, for example by the reduction of selenate to selenite by Ti3+ cations. Thermochemical or electrochemical reduction pathways to convert NO3- to N2 or NH3, which are benign or value-added products, respectively are examined over single-atom electrocatalysts (SAC) in Cu. The activity and selectivity for nitrate reduction are compared with the competitive hydrogen evolution reaction (HER). Cu suppresses HER but produces toxic NO2- because of a high activation barrier for cleaving the second N-O bond. SACs provide secondary sites for reaction and break traditional linear scaling relationships. Ru-SACs selectively produce NH3 because N-O bond scission is facile, and the resulting N remains isolated on SAC sites; reacting with H+ from solvating H2O to form ammonia. Conversely, Pd-SAC forms N2 because the reduced N* atoms migrate to the Cu surface, which has a low H availability, allowing N atoms to combine to N2. This relation between N* binding preference and reduction product is demonstrated across an array of SAC elements. Hence, the solvation effects on the surface critically alter the activity of adsorption and catalysis and the removal of toxic pollutants can be improved by altering the surface water network.
ContributorsGupta, Srishti (Author) / Muhich, Christopher L (Thesis advisor) / Singh, Arunima (Committee member) / Emady, Heather (Committee member) / Westerhoff, Paul (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2023
164187-Thumbnail Image.png
Description

Utilizing DFT calculations, various substitutions on the AlPO-5 zeolite were screened for adsorption of common air molecules. Furthermore, free energy analyses using the Helmholtz free energy equation were performed to determine candidates for selective adsorption of one specific air molecule, and their operating temperature range. Through this study, it was

Utilizing DFT calculations, various substitutions on the AlPO-5 zeolite were screened for adsorption of common air molecules. Furthermore, free energy analyses using the Helmholtz free energy equation were performed to determine candidates for selective adsorption of one specific air molecule, and their operating temperature range. Through this study, it was found that Cerium- (92-542 K), Germanium- (69-370 K), Chromium- (35-293 K), and Praseodymium- (0-420 K) substituted AlPO-5 selectively adsorbs to O2 molecules for the given temperature ranges. In addition, Palladium-substituted AlPO-5 selectively adsorbs to CO within 430-755 K.

ContributorsIrudaya Pious Suresh, Enosh (Author) / Muhich, Christopher (Thesis director) / Emady, Heather (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05