Matching Items (7)
Filtering by

Clear all filters

153163-Thumbnail Image.png
Description
With the aid of metabolic pathways engineering, microbes are finding increased use as biocatalysts to convert renewable biomass resources into fine chemicals, pharmaceuticals and other valuable compounds. These alternative, bio-based production routes offer distinct advantages over traditional synthesis methods, including lower energy requirements, rendering them as more "green" and

With the aid of metabolic pathways engineering, microbes are finding increased use as biocatalysts to convert renewable biomass resources into fine chemicals, pharmaceuticals and other valuable compounds. These alternative, bio-based production routes offer distinct advantages over traditional synthesis methods, including lower energy requirements, rendering them as more "green" and "eco-friendly". Escherichia coli has recently been engineered to produce the aromatic chemicals (S)-styrene oxide and phenol directly from renewable glucose. Several factors, however, limit the viability of this approach, including low titers caused by product inhibition and/or low metabolic flux through the engineered pathways. This thesis focuses on addressing these concerns using magnetic mesoporous carbon powders as adsorbents for continuous, in-situ product removal as a means to alleviate such limitations. Using process engineering as a means to troubleshoot metabolic pathways by continuously removing products, increased yields are achieved from both pathways. By performing case studies in product toxicity and reaction equilibrium it was concluded that each step of a metabolic pathway can be optimized by the strategic use of in-situ adsorption as a process engineering tool.
ContributorsVasudevan, Anirudh (Author) / Nielsen, David R (Thesis advisor) / Torres, César I (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2014
150327-Thumbnail Image.png
Description
This dissertation presents a systematic study of the sorption mechanisms of hydrophobic silica aerogel (Cabot Nanogel®) granules for oil and volatile organic compounds (VOCs) in different phases. The performance of Nanogel for removing oil from laboratory synthetic oil-in-water emulsions and real oily wastewater, and VOCs from their aqueous solution, in

This dissertation presents a systematic study of the sorption mechanisms of hydrophobic silica aerogel (Cabot Nanogel®) granules for oil and volatile organic compounds (VOCs) in different phases. The performance of Nanogel for removing oil from laboratory synthetic oil-in-water emulsions and real oily wastewater, and VOCs from their aqueous solution, in both packed bed (PB) and inverse fluidized bed (IFB) modes was also investigated. The sorption mechanisms of VOCs in the vapor, pure liquid, and aqueous solution phases, free oil, emulsified oil, and oil from real wastewater on Nanogel were systematically studied via batch kinetics and equilibrium experiments. The VOC results show that the adsorption of vapor is very slow due to the extremely low thermal conductivity of Nanogel. The faster adsorption rates in the liquid and solution phases are controlled by the mass transport, either by capillary flow or by vapor diffusion/adsorption. The oil results show that Nanogel has a very high capacity for adsorption of pure oils. However, the rate for adsorption of oil from an oil-water emulsion on the Nanogel is 5-10 times slower than that for adsorption of pure oils or organics from their aqueous solutions. For an oil-water emulsion, the oil adsorption capacity decreases with an increasing proportion of the surfactant added. An even lower sorption capacity and a slower sorption rate were observed for a real oily wastewater sample due to the high stability and very small droplet size of the wastewater. The performance of Nanogel granules for removing emulsified oil, oil from real oily wastewater, and toluene at low concentrations in both PB and IFB modes was systematically investigated. The hydrodynamics characteristics of the Nanogel granules in an IFB were studied by measuring the pressure drop and bed expansion with superficial water velocity. The density of the Nanogel granules was calculated from the plateau pressure drop of the IFB. The oil/toluene removal efficiency and the capacity of the Nanogel granules in the PB or IFB were also measured experimentally and predicted by two models based on equilibrium and kinetic batch measurements of the Nanogel granules.
ContributorsWang, Ding (Author) / Lin, Jerry Y.S. (Thesis advisor) / Pfeffer, Robert (Thesis advisor) / Westerhoff, Paul (Committee member) / Nielsen, David (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2011
150054-Thumbnail Image.png
Description
Emergent environmental issues, ever-shrinking petroleum reserves, and rising fossil fuel costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. Meanwhile, however, the development and viability of biofuel fermentations remain limited by numerous factors such as feedback inhibition and inefficient and generally energy intensive product recovery

Emergent environmental issues, ever-shrinking petroleum reserves, and rising fossil fuel costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. Meanwhile, however, the development and viability of biofuel fermentations remain limited by numerous factors such as feedback inhibition and inefficient and generally energy intensive product recovery processes. To circumvent both feedback inhibition and recovery issues, researchers have turned their attention to incorporating energy efficient separation techniques such as adsorption in in situ product recovery (ISPR) approaches. This thesis focused on the characterization of two novel adsorbents for the recovery of alcohol biofuels from model aqueous solutions. First, a hydrophobic silica aerogel was evaluated as a biofuel adsorbent through characterization of equilibrium behavior for conventional second generation biofuels (e.g., ethanol and n-butanol). Longer chain and accordingly more hydrophobic alcohols (i.e., n-butanol and 2-pentanol) were more effectively adsorbed than shorter chain alcohols (i.e., ethanol and i-propanol), suggesting a mechanism of hydrophobic adsorption. Still, the adsorbed alcohol capacity at biologically relevant conditions were low relative to other `model' biofuel adsorbents as a result of poor interfacial contact between the aqueous and sorbent. However, sorbent wettability and adsorption is greatly enhanced at high concentrations of alcohol in the aqueous. Consequently, the sorbent exhibits Type IV adsorption isotherms for all biofuels studied, which results from significant multilayer adsorption at elevated alcohol concentrations in the aqueous. Additionally, sorbent wettability significantly affects the dynamic binding efficiency within a packed adsorption column. Second, mesoporous carbons were evaluated as biofuel adsorbents through characterization of equilibrium and kinetic behavior. Variations in synthetic conditions enabled tuning of specific surface area and pore morphology of adsorbents. The adsorbed alcohol capacity increased with elevated specific surface area of the adsorbents. While their adsorption capacity is comparable to polymeric adsorbents of similar surface area, pore morphology and structure of mesoporous carbons greatly influenced adsorption rates. Multiple cycles of adsorbent regeneration rendered no impact on adsorption equilibrium or kinetics. The high chemical and thermal stability of mesoporous carbons provide potential significant advantages over other commonly examined biofuel adsorbents. Correspondingly, mesoporous carbons should be further studied for biofuel ISPR applications.
ContributorsLevario, Thomas (Author) / Nielsen, David R (Thesis advisor) / Vogt, Bryan D (Committee member) / Lind, Mary L (Committee member) / Arizona State University (Publisher)
Created2011
155914-Thumbnail Image.png
Description
Membrane technology is a viable option to debottleneck distillation processes and minimize the energy burden associated with light hydrocarbon mixture separations. Zeolitic imidazolate frameworks (ZIFs) are a new class of microporous metal-organic frameworks with highly tailorable zeolitic pores and unprecedented separation characteristics. ZIF-8 membranes demonstrate superior separation performance for propylene/propane

Membrane technology is a viable option to debottleneck distillation processes and minimize the energy burden associated with light hydrocarbon mixture separations. Zeolitic imidazolate frameworks (ZIFs) are a new class of microporous metal-organic frameworks with highly tailorable zeolitic pores and unprecedented separation characteristics. ZIF-8 membranes demonstrate superior separation performance for propylene/propane (C3) and hydrogen/hydrocarbon mixtures at room temperature. However, to date, little is known about the static thermal stability and ethylene/ethane (C2) separation characteristics of ZIF-8. This dissertation presents a set of fundamental studies to investigate the thermal stability, transport and modification of ZIF-8 membranes for light hydrocarbon separations.

Static TGA decomposition kinetics studies show that ZIF-8 nanocrystals maintain their crystallinity up to 200○C in inert, oxidizing and reducing atmospheres. At temperatures of 250○C and higher, the findings herein support the postulation that ZIF-8 nanocrystals undergo temperature induced decomposition via thermolytic bond cleaving reactions to form an imidazole-Zn-azirine structure. The crystallinity/bond integrity of ZIF-8 membrane thin films is maintained at temperatures below 150○C.

Ethane and ethylene transport was studied in single and binary gas mixtures. Thermodynamic parameters derived from membrane permeation and crystal adsorption experiments show that the C2 transport mechanism is controlled by adsorption rather than diffusion. Low activation energy of diffusion values for both C2 molecules and limited energetic/entropic diffusive selectivity are observed for C2 molecules despite being larger than the nominal ZIF-8 pore aperture and is due to pore flexibility.

Finally, ZIF-8 membranes were modified with 5,6 dimethylbenzimidazole through solvent assisted membrane surface ligand exchange to narrow the pore aperture for enhanced molecular sieving. Results show that relatively fast exchange kinetics occur at the mainly at the outer ZIF-8 membrane surface between 0-30 minutes of exchange. Short-time exchange enables C3 selectivity increases with minimal olefin permeance losses. As the reaction proceeds, the ligand exchange rate slows as the 5,6 DMBIm linker proceeds into the ZIF-8 inner surface, exchanges with the original linker and first disrupts the original framework’s crystallinity, then increases order as the reaction proceeds. The ligand exchange rate increases with temperature and the H2/C2 separation factor increases with increases in ligand exchange time and temperature.
ContributorsJames, Joshua B. (Author) / Lin, Jerry Y.S. (Thesis advisor) / Emady, Heather (Committee member) / Lind, Mary Laura (Committee member) / Mu, Bin (Committee member) / Seo, Dong (Committee member) / Arizona State University (Publisher)
Created2017
157184-Thumbnail Image.png
Description
The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is

The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is one way to avoid our current gigaton-scale emission of carbon dioxide into the atmosphere. However, for this to be possible, separation techniques are necessary to remove the nitrogen from air before combustion or from the flue gas after combustion. Metal-organic frameworks (MOFs) are a relatively new class of porous material that show great promise for adsorptive separation processes. Here, potential mechanisms of O2/N2 separation and CO2/N2 separation are explored.

First, a logical categorization of potential adsorptive separation mechanisms in MOFs is outlined by comparing existing data with previously studied materials. Size-selective adsorptive separation is investigated for both gas systems using molecular simulations. A correlation between size-selective equilibrium adsorptive separation capabilities and pore diameter is established in materials with complex pore distributions. A method of generating mobile extra-framework cations which drastically increase adsorptive selectivity toward nitrogen over oxygen via electrostatic interactions is explored through experiments and simulations. Finally, deposition of redox-active ferrocene molecules into systematically generated defects is shown to be an effective method of increasing selectivity towards oxygen.
ContributorsMcIntyre, Sean (Author) / Mu, Bin (Thesis advisor) / Green, Matthew (Committee member) / Lind, Marylaura (Committee member) / Arizona State University (Publisher)
Created2019
155833-Thumbnail Image.png
Description
The aims of this project are to demonstrate the design and implementation of separations modalities for 1) in situ product recovery and 2) upstream pretreatment of toxic feedstocks. Many value-added bioproducts such as alcohols (ethanol and butanol) developed for the transportation sector are known to be integral to a sustainable

The aims of this project are to demonstrate the design and implementation of separations modalities for 1) in situ product recovery and 2) upstream pretreatment of toxic feedstocks. Many value-added bioproducts such as alcohols (ethanol and butanol) developed for the transportation sector are known to be integral to a sustainable future. Likewise, bioproduced aromatic building blocks for sustainable manufacturing such as phenol will be equally important. The production of these compounds is often limited by product toxicity at 2- 20 g/L, whereas it may desirable to produce 20-200 g/L for economically feasible scale up. While low-cost feedstocks are desirable for economical production, they contain highly cytotoxic value-added byproducts such as furfural. It is therefore desirable to design facile detoxification methods for lignocellulose-derived feedstocks to isolate and recover furfural preceding ethanol fermentation by Escherichia coli. Correspondingly it is desirable to design efficient facile in situ recovery modalities for bioalcohols and phenolic bioproducts. Accordingly, in-situ removal modalities were designed for simultaneous acetone, butanol, and ethanol recovery. Additionally, a furfural removal modality from lignocellulosic hydrolysates was designed for upstream pretreatment. Solid-liquid adsorption was found to serve well each of the recovery modalities characterized here. More hydrophobic compounds such as butanol and furfural are readily recovered from aqueous solutions via adsorption. The primary operational drawback to adsorption is adsorbent recovery and subsequent desorption of the product. Novel magnetically separable mesoporous carbon powders (MMCPs) were characterized and found to be rapidly separable from solutions at 91% recovery by mass. Thermal desorption of value added products was found efficient for recovery of butanol and furfural. Fufural was desorbed from the MMCPs up to 57% by mass with repeated adsorption/thermal desorption cycles. Butanol was recovered from MMCPs up to an average 93% by mass via thermal desorption. As another valuable renewable fermentation product, phenol was also collected via in-situ adsorption onto Dowex Optipore L-493 resin. Phenol recovery from the resins was efficiently accomplished with tert-butyl methyl ether up to 77% after 3 washes.
ContributorsStaggs, Kyle William (Author) / Nielsen, David R (Thesis advisor) / Lin, Jerry S (Committee member) / Torres, César I (Committee member) / Lind, Mary Laura (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2017
158079-Thumbnail Image.png
Description
Global warming resulted from greenhouse gases emission has received widespread attention. Meanwhile, it is required to explore renewable and environmentally friendly energy sources due to the severe pollution of the environment caused by fossil fuel combustion. In order to realize a substantial adsorption process to resolve the environmental issues, the

Global warming resulted from greenhouse gases emission has received widespread attention. Meanwhile, it is required to explore renewable and environmentally friendly energy sources due to the severe pollution of the environment caused by fossil fuel combustion. In order to realize a substantial adsorption process to resolve the environmental issues, the development of new adsorbents with improved properties has become the most critical issue. This dissertation presents the work of four individual but related studies on systematic characterization and process simulations of novel adsorbents with superior adsorption properties.

A perovskite oxide material, La0.1Sr0.9Co0.9Fe0.1O3-δ (LSCF1991), was investigated first for high-temperature air separation. The oxygen sorption/desorption behavior of LSCF1991 was studied by thermogravimetric analysis (TGA) and fixed-bed breakthrough experiments. A parametric study was performed to design and optimize the operating parameters of the high-temperature air separation process by pressure swing adsorption (PSA). The results have shown great potential for applying LSCF1991 to the high-temperature air separation due to its excellent separation performance and low energy requirement.

Research on using nanostructured zeolite NaX (NZ) as adsorbents for CO2 capture was subsequently conducted. The CO2/N2 adsorption characterizations indicated that the NZ samples lead to enhanced adsorption properties compared with the commercial zeolites (MZ). From the two-bed six-step PSA simulation, NZ saved around 30% energy over MZ for CO2 capture and recovery while achieving a higher CO2 purity and productivity.

A unique screening method was developed for efficient evaluation of adsorbents for PSA processes. In the case study, 47 novel adsorbents have been screened for coal bed methane (CBM) recovery. The adsorbents went through scoring-based prescreening, PSA simulation, and optimization. The process performance indicators were correlated with the adsorption selectivity and capacities, which provides new insights for predicting the PSA performance.

A new medium-temperature oxygen sorbent, YBaCo4O7+δ (YBC114), was investigated as an oxygen pumping material to facilitate solar thermochemical fuel production. The oxygen uptake and release attributes of YBC114 were studied by both TGA and a small-scale evacuation test. The study proved that the particle size has a significant effect on the oxygen pumping behavior of YBC114, especially for the uptake kinetics.
ContributorsXu, Mai (Author) / Deng, Shuguang (Thesis advisor) / Lind, Marylaura (Committee member) / Lin, Jerry Y.S. (Committee member) / Green, Matthew D. (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2020