Matching Items (3)
Filtering by

Clear all filters

151043-Thumbnail Image.png
Description
A sample of 127 high school Advanced Placement (AP) Calculus students from two schools was utilized to study the effects of an engineering design-based problem solving strategy on student performance with AP style Related Rate questions and changes in conceptions, beliefs, and influences. The research design followed a treatment-control multiple

A sample of 127 high school Advanced Placement (AP) Calculus students from two schools was utilized to study the effects of an engineering design-based problem solving strategy on student performance with AP style Related Rate questions and changes in conceptions, beliefs, and influences. The research design followed a treatment-control multiple post-assessment model with three periods of data collection. Four high school calculus classes were selected for the study, with one class designated as the treatment and three as the controls. Measures for this study include a skills assessment, Related Rate word problem assessments, and a motivation problem solving survey. Data analysis utilized a mixed methods approach. Quantitative analysis consisted of descriptive and inferential methods utilizing nonparametric statistics for performance comparisons and structural equation modeling to determine the underlying structure of the problem solving motivation survey. Statistical results indicate that time on task was a major factor in enhanced performance between measurement time points 1 and 2. In the experimental classroom, the engineering design process as a problem solving strategy emerged as an important factor in demonstrating sustained achievement across the measurement time series when solving volumetric rates of change as compared to traditional problem solving strategies. In the control classrooms, where traditional problem solving strategies were emphasized, a greater percentage of students than in the experimental classroom demonstrated enhanced achievement from point 1 to 2, but showed decrease in achievement from point 2 to 3 in the measurement time series. Results from the problem solving motivation survey demonstrated that neither time on task nor instruction strategy produced any effect on student beliefs about and perceptions of problem solving. Qualitative error analysis showed that type of instruction had little effect on the type and number of errors committed, with the exception of procedural errors from performing a derivative and errors decoding the problem statement. Results demonstrated that students who engaged in the engineering design-based committed a larger number of decoding errors specific to Pythagorean type Related Rate problems; while students who engaged in routine problem solving did not sustain their ability to correctly differentiate a volume equation over time. As a whole, students committed a larger number of misused data errors than other types of errors. Where, misused data errors are the discrepancy between the data as given in a problem and how the student used the data in problem solving.
ContributorsThieken, John (Author) / Ganesh, Tirupalavanam G. (Thesis advisor) / Sloane, Finbarr (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2012
171985-Thumbnail Image.png
Description
This three-article dissertation considers the pedagogical practices for developing statistically literate students and teaching data-driven decision-making with the goal of preparing students for civic engagement and improving student achievement. The first article discusses a critical review of the literature on data-driven decision-making project conditions in K-12 educational settings. Upon reviewing

This three-article dissertation considers the pedagogical practices for developing statistically literate students and teaching data-driven decision-making with the goal of preparing students for civic engagement and improving student achievement. The first article discusses a critical review of the literature on data-driven decision-making project conditions in K-12 educational settings. Upon reviewing the literature, I synthesized and summarized the current practices into three distinct models. The models serve to clarify the pedagogical choices of the teacher and the degree at which students' views are involved and incorporated into the projects. I propose an alternative model/framework and discuss possible implications in the classroom. In the second article, I use the framework developed in the first article as the basis for an educational research intervention. I describe a study where I developed a handbook based on the framework and implemented a sample of professional development sessions from the handbook. Advisors and teachers provided feedback on the handbook and professional development. This feedback served as the subject of analysis while I continued to refine the handbook and the professional learning sessions. I describe the refinement process and the implications in terms of design decisions of educational interventions and statistical knowledge for teaching. The final article performs a secondary data analysis of school, teacher, and student level data using the Trends in International Mathematics and Science Study (TIMSS) database. The paper seeks to answer the research question: “Which aspects of teacher professional knowledge measures predict student achievement in the mathematical domain of data and statistical topics?” The results indicate that when controlling for school level wealth index, teacher characteristics are not as influential as the school level wealth index. I discuss future research as well as school policy and curriculum implications of these results.
ContributorsRiske, Amanda Katherine (Author) / Zuiker, Steven (Thesis advisor) / Milner, Fabio (Thesis advisor) / Middleton, James (Committee member) / Pivovarova, Margarita (Committee member) / Arizona State University (Publisher)
Created2022
153186-Thumbnail Image.png
Description
This study explores teacher educators' personal theories about the instructional practices central to preparing future teachers, how they enact those personal theories in the classroom, how they represent the relationship between content, pedagogy, and technology, and the function of technology in teacher educators' personal theories about the teaching of mathematics

This study explores teacher educators' personal theories about the instructional practices central to preparing future teachers, how they enact those personal theories in the classroom, how they represent the relationship between content, pedagogy, and technology, and the function of technology in teacher educators' personal theories about the teaching of mathematics and their practices as enacted in the classroom. The conceptual frameworks of knowledge as situated and technology as situated provide a theoretical and analytical lens for examining individual instructor's conceptions and classroom activity as situated in the context of experiences and relationships in the social world. The research design employs a mixed method design to examine data collected from a representative sample of three full-time faculty members teaching methods of teaching mathematics in elementary education at the undergraduate level. Three primary types of data were collected and analyzed:

a) structured interviews using the repertory grid technique to model the mathematics education instructors' schemata regarding the teaching of mathematics methods; b) content analysis of classroom observations to develop models that represent the relationship of pedagogy, content, and technology as enacted in the classrooms; and c) brief retrospective protocols after each observed class session to explore the reasoning and individual choices made by an instructor that underlie their teaching decisions in the classroom. Findings reveal that although digital technology may not appear to be an essential component of an instructor's toolkit, technology can still play an integral role in teaching. This study puts forward the idea of repurposing as technology -- the ability to repurpose items as models, tools, and visual representations and integrate them into the curriculum. The instructors themselves became the technology, or the mediational tool, and introduced students to new meanings for "old" cultural artifacts in the classroom. Knowledge about the relationships between pedagogy, content, and technology and the function of technology in the classroom can be used to inform professional development for teacher educators with the goal of improving teacher preparation in mathematics education.
ContributorsToth, Meredith Jean (Author) / Middleton, James (Thesis advisor) / Sloane, Finbarr (Committee member) / Buss, Ray (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2014