Matching Items (13)
Filtering by

Clear all filters

152422-Thumbnail Image.png
Description
With the growth of IT products and sophisticated software in various operating systems, I observe that security risks in systems are skyrocketing constantly. Consequently, Security Assessment is now considered as one of primary security mechanisms to measure assurance of systems since systems that are not compliant with security requirements may

With the growth of IT products and sophisticated software in various operating systems, I observe that security risks in systems are skyrocketing constantly. Consequently, Security Assessment is now considered as one of primary security mechanisms to measure assurance of systems since systems that are not compliant with security requirements may lead adversaries to access critical information by circumventing security practices. In order to ensure security, considerable efforts have been spent to develop security regulations by facilitating security best-practices. Applying shared security standards to the system is critical to understand vulnerabilities and prevent well-known threats from exploiting vulnerabilities. However, many end users tend to change configurations of their systems without paying attention to the security. Hence, it is not straightforward to protect systems from being changed by unconscious users in a timely manner. Detecting the installation of harmful applications is not sufficient since attackers may exploit risky software as well as commonly used software. In addition, checking the assurance of security configurations periodically is disadvantageous in terms of time and cost due to zero-day attacks and the timing attacks that can leverage the window between each security checks. Therefore, event-driven monitoring approach is critical to continuously assess security of a target system without ignoring a particular window between security checks and lessen the burden of exhausted task to inspect the entire configurations in the system. Furthermore, the system should be able to generate a vulnerability report for any change initiated by a user if such changes refer to the requirements in the standards and turn out to be vulnerable. Assessing various systems in distributed environments also requires to consistently applying standards to each environment. Such a uniformed consistent assessment is important because the way of assessment approach for detecting security vulnerabilities may vary across applications and operating systems. In this thesis, I introduce an automated event-driven security assessment framework to overcome and accommodate the aforementioned issues. I also discuss the implementation details that are based on the commercial-off-the-self technologies and testbed being established to evaluate approach. Besides, I describe evaluation results that demonstrate the effectiveness and practicality of the approaches.
ContributorsSeo, Jeong-Jin (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Lee, Joohyung (Committee member) / Arizona State University (Publisher)
Created2014
152590-Thumbnail Image.png
Description
Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost

Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost in handling breaches for security architects and security engineers. The process of security testing which involves creating tests that effectively examine vulnerabilities is a challenging task. Role-Based Access Control (RBAC) has been widely adopted to support fine-grained access control. However, in practice, due to its complexity including role management, role hierarchy with hundreds of roles, and their associated privileges and users, systematically testing RBAC systems is crucial to ensure the security in various domains ranging from cyber-infrastructure to mission-critical applications. In this thesis, we introduce i) a security testing technique for RBAC systems considering the principle of maximum privileges, the structure of the role hierarchy, and a new security test coverage criterion; ii) a MTBDD (Multi-Terminal Binary Decision Diagram) based representation of RBAC security policy including RHMTBDD (Role Hierarchy MTBDD) to efficiently generate effective positive and negative security test cases; and iii) a security testing framework which takes an XACML-based RBAC security policy as an input, parses it into a RHMTBDD representation and then generates positive and negative test cases. We also demonstrate the efficacy of our approach through case studies.
ContributorsGupta, Poonam (Author) / Ahn, Gail-Joon (Thesis advisor) / Collofello, James (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2014
152385-Thumbnail Image.png
Description
This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of the components on which the survival of botnet depends. Individual

This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of the components on which the survival of botnet depends. Individual bots use the C&C; channel to receive commands and send the data. This thesis develops active host based approach for identifying the presence of bot based on the anomalies in the usage patterns of the user before and after the bot is installed on the user smartphone and alerting the user to the presence of the bot. A profile is constructed for each user based on the regular web usage patterns (achieved by intercepting the http(s) traffic) and implementing machine learning techniques to continuously learn the user's behavior and changes in the behavior and all the while looking for any anomalies in the user behavior above a threshold which will cause the user to be notified of the anomalous traffic. A prototype bot which uses OSN s as C&C; channel is constructed and used for testing. Users are given smartphones(Nexus 4 and Galaxy Nexus) running Application proxy which intercepts http(s) traffic and relay it to a server which uses the traffic and constructs the model for a particular user and look for any signs of anomalies. This approach lays the groundwork for the future host-based counter measures for smartphone botnets using OSN s as C&C; channel.
ContributorsKilari, Vishnu Teja (Author) / Xue, Guoliang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2013
152874-Thumbnail Image.png
Description
The widespread adoption of mobile devices gives rise to new opportunities and challenges for authentication mechanisms. Many traditional authentication mechanisms become unsuitable for smart devices. For example, while password is widely used on computers as user identity authentication, inputting password on small smartphone screen is error-prone and not convenient. In

The widespread adoption of mobile devices gives rise to new opportunities and challenges for authentication mechanisms. Many traditional authentication mechanisms become unsuitable for smart devices. For example, while password is widely used on computers as user identity authentication, inputting password on small smartphone screen is error-prone and not convenient. In the meantime, there are emerging demands for new types of authentication. Proximity authentication is an example, which is not needed for computers but quite necessary for smart devices. These challenges motivate me to study and develop novel authentication mechanisms specific for smart devices.

In this dissertation, I am interested in the special authentication demands of smart devices and about to satisfy the demands. First, I study how the features of smart devices affect user identity authentications. For identity authentication domain, I aim to design a continuous, forge-resistant authentication mechanism that does not interrupt user-device interactions. I propose a mechanism that authenticates user identity based on the user's finger movement patterns. Next, I study a smart-device-specific authentication, proximity authentication, which authenticates whether two devices are in close proximity. For prox- imity authentication domain, I aim to design a user-friendly authentication mechanism that can defend against relay attacks. In addition, I restrict the authenticated distance to the scale of near field, i.e., a few centimeters. My first design utilizes a user's coherent two-finger movement on smart device screen to restrict the distance. To achieve a fully-automated system, I explore acoustic communications and propose a novel near field authentication system.
ContributorsLi, Lingjun (Author) / Xue, Guoliang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Ye, Jieping (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2014
153147-Thumbnail Image.png
Description
The rate at which new malicious software (Malware) is created is consistently increasing each year. These new malwares are designed to bypass the current anti-virus countermeasures employed to protect computer systems. Security Analysts must understand the nature and intent of the malware sample in order to protect computer systems from

The rate at which new malicious software (Malware) is created is consistently increasing each year. These new malwares are designed to bypass the current anti-virus countermeasures employed to protect computer systems. Security Analysts must understand the nature and intent of the malware sample in order to protect computer systems from these attacks. The large number of new malware samples received daily by computer security companies require Security Analysts to quickly determine the type, threat, and countermeasure for newly identied samples. Our approach provides for a visualization tool to assist the Security Analyst in these tasks that allows the Analyst to visually identify relationships between malware samples.

This approach consists of three steps. First, the received samples are processed by a sandbox environment to perform a dynamic behavior analysis. Second, the reports of the dynamic behavior analysis are parsed to extract identifying features which are matched against other known and analyzed samples. Lastly, those matches that are determined to express a relationship are visualized as an edge connected pair of nodes in an undirected graph.
ContributorsHolmes, James Edward (Author) / Ahn, Gail-Joon (Thesis advisor) / Dasgupta, Partha (Committee member) / Doupe, Adam (Committee member) / Arizona State University (Publisher)
Created2014
153032-Thumbnail Image.png
Description
Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods

Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods and defense techniques. In this dissertation, I study how to discover and use patterns with uncertainty and randomness to counter security challenges. By extracting and modeling patterns in security events, I am able to handle previously unknown security events with quantified confidence, rather than simply making binary decisions. In particular, I cope with the following four real-world security challenges by modeling and analyzing with pattern-based approaches: 1) How to detect and attribute previously unknown shellcode? I propose instruction sequence abstraction that extracts coarse-grained patterns from an instruction sequence and use Markov chain-based model and support vector machines to detect and attribute shellcode; 2) How to safely mitigate routing attacks in mobile ad hoc networks? I identify routing table change patterns caused by attacks, propose an extended Dempster-Shafer theory to measure the risk of such changes, and use a risk-aware response mechanism to mitigate routing attacks; 3) How to model, understand, and guess human-chosen picture passwords? I analyze collected human-chosen picture passwords, propose selection function that models patterns in password selection, and design two algorithms to optimize password guessing paths; and 4) How to identify influential figures and events in underground social networks? I analyze collected underground social network data, identify user interaction patterns, and propose a suite of measures for systematically discovering and mining adversarial evidence. By solving these four problems, I demonstrate that discovering and using patterns could help deal with challenges in computer security, network security, human-computer interaction security, and social network security.
ContributorsZhao, Ziming (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Santanam, Raghu (Committee member) / Arizona State University (Publisher)
Created2014
153056-Thumbnail Image.png
Description
With the rise of mobile technology, the personal lives and sensitive information of everyday citizens are carried about without a thought to the risks involved. Despite this high possibility of harm, many fail to use simple security to protect themselves because they feel the benefits of securing their devices do

With the rise of mobile technology, the personal lives and sensitive information of everyday citizens are carried about without a thought to the risks involved. Despite this high possibility of harm, many fail to use simple security to protect themselves because they feel the benefits of securing their devices do not outweigh the cost to usability. The main issue is that beyond initial authentication, sessions are maintained using optional timeout mechanisms where a session will end if a user is inactive for a period of time. This interruption-based form of continuous authentication requires constant user intervention leading to frustration, which discourages its use. No solution currently exists that provides an implementation beyond the insecure and low usability of simple timeout and re-authentication. This work identifies the flaws of current mobile authentication techniques and provides a new solution that is not limiting to the user, has a system for secure, active continuous authentication, and increases the usability and security over current methods.
ContributorsRomo, James Tyler (Author) / Ahn, Gail-Joon (Thesis advisor) / Dasgupta, Partha (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2014
150382-Thumbnail Image.png
Description
This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.
ContributorsZhong, Yunji (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2011
Description
On Android, existing security procedures require apps to request permissions for access to sensitive resources.

Only when the user approves the requested permissions will the app be installed.

However, permissions are an incomplete security mechanism.

In addition to a user's limited understanding of permissions, the mechanism does not account for the possibility that

On Android, existing security procedures require apps to request permissions for access to sensitive resources.

Only when the user approves the requested permissions will the app be installed.

However, permissions are an incomplete security mechanism.

In addition to a user's limited understanding of permissions, the mechanism does not account for the possibility that different permissions used together have the ability to be more dangerous than any single permission alone.

Even if users did understand the nature of an app's requested permissions, this mechanism is still not enough to guarantee that a user's information is protected.

Applications can potentially send or receive sensitive information from other applications without the required permissions by using intents.

In other words, applications can potentially collaborate in ways unforeseen by the user, even if the user understands the permissions of each app independently.

In this thesis, we present several graph-based approaches to address these issues.

We determine the permissions of an app and generate scores based on our assigned value of certain resources.

We analyze these scores overall, as well as in the context of the app's category as determined by Google Play.

We show that these scores can be used to identify overzealous apps, as well as apps that do not properly fit within their category.

We analyze potential interactions between different applications using intents, and identify several promiscuous apps with low permission scores, showing that permissions alone are not sufficient to evaluate the security risks of an app.

Our analyses can form the basis of a system to assist users in identifying apps that can potentially compromise user privacy.
ContributorsGibson, Aaron (Author) / Bazzi, Rida (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Walker, Erin (Committee member) / Arizona State University (Publisher)
Created2015
154095-Thumbnail Image.png
Description
Smartphones are pervasive nowadays. They are supported by mobile platforms that allow users to download and run feature-rich mobile applications (apps). While mobile apps help users conveniently process personal data on mobile devices, they also pose security and privacy threats and put user's data at risk. Even though modern mobile

Smartphones are pervasive nowadays. They are supported by mobile platforms that allow users to download and run feature-rich mobile applications (apps). While mobile apps help users conveniently process personal data on mobile devices, they also pose security and privacy threats and put user's data at risk. Even though modern mobile platforms such as Android have integrated security mechanisms to protect users, most mechanisms do not easily adapt to user's security requirements and rapidly evolving threats. They either fail to provide sufficient intelligence for a user to make informed security decisions, or require great sophistication to configure the mechanisms for enforcing security decisions. These limitations lead to a situation where users are disadvantageous against emerging malware on modern mobile platforms. To remedy this situation, I propose automated and systematic approaches to address three security management tasks: monitoring, assessment, and confinement of mobile apps. In particular, monitoring apps helps a user observe and record apps' runtime behaviors as controlled under security mechanisms. Automated assessment distills intelligence from the observed behaviors and the security configurations of security mechanisms. The distilled intelligence further fuels enhanced confinement mechanisms that flexibly and accurately shape apps' behaviors. To demonstrate the feasibility of my approaches, I design and implement a suite of proof-of-concept prototypes that support the three tasks respectively.
ContributorsJing, Yiming (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Committee member) / Huang, Dijiang (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015