Matching Items (7)
Filtering by

Clear all filters

152606-Thumbnail Image.png
Description
GaAs-based solar cells have attracted much interest because of their high conversion efficiencies of ~28% under one sun illumination. The main carrier recombination mechanisms in the GaAs-based solar cells are surface recombination, radiative recombination and non-radiative recombination. Photon recycling reduces the effect of radiative recombination and is an approach to

GaAs-based solar cells have attracted much interest because of their high conversion efficiencies of ~28% under one sun illumination. The main carrier recombination mechanisms in the GaAs-based solar cells are surface recombination, radiative recombination and non-radiative recombination. Photon recycling reduces the effect of radiative recombination and is an approach to obtain the device performance described by detailed balance theory. The photon recycling model has been developed and was applied to investigate the loss mechanisms in the state-of-the-art GaAs-based solar cell structures using PC1D software. A standard fabrication process of the GaAs-based solar cells is as follows: wafer preparation, individual cell isolation by mesa, n- and p-type metallization, rapid thermal annealing (RTA), cap layer etching, and anti-reflection coating (ARC). The growth rate for GaAs-based materials is one of critical factors to determine the cost for the growth of GaAs-based solar cells. The cost for fabricating GaAs-based solar cells can be reduced if the growth rate is increased without degrading the crystalline quality. The solar cell wafers grown at different growth rates of 14 μm/hour and 55 μm/hour were discussed in this work. The structural properties of the wafers were characterized by X-ray diffraction (XRD) to identify the crystalline quality, and then the as-grown wafers were fabricated into solar cell devices under the same process conditions. The optical and electrical properties such as surface reflection, external quantum efficiency (EQE), dark I-V, Suns-Voc, and illuminated I-V under one sun using a solar simulator were measured to compare the performances of the solar cells with different growth rates. Some simulations in PC1D have been demonstrated to investigate the reasons of the different device performances between fast growth and slow growth structures. A further analysis of the minority carrier lifetime is needed to investigate into the difference in device performances.
ContributorsZhang, Chaomin (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / Faleev, Nikolai (Committee member) / Arizona State University (Publisher)
Created2014
152632-Thumbnail Image.png
Description
Silicon (Si) solar cells are the dominant technology used in the Photovoltaics industry. Field-effect passivation by means of electrostatic charges stored in an overlying insulator on a silicon solar cell has been proven to be a significantly efficient way to reduce effective surface recombination velocity and increase minority carrier lifetime.

Silicon (Si) solar cells are the dominant technology used in the Photovoltaics industry. Field-effect passivation by means of electrostatic charges stored in an overlying insulator on a silicon solar cell has been proven to be a significantly efficient way to reduce effective surface recombination velocity and increase minority carrier lifetime. Silicon nitride (SiNx) films have been extensively used as passivation layers. The capability to store charges makes SiNx a promising material for excellent feild effect passivation. In this work, symmetrical Si/SiO2/SiNx stacks are developed to study the effect of charges in SiNx films. SiO2 films work as barrier layers. Corona charging technique showed the ability to inject charges into the SiNx films in a short time. Minority carrier lifetimes of the Czochralski (CZ) Si wafers increased significantly after either positive or negative charging. A fast and contactless method to characterize the charged overlying insulators on Si wafer through lifetime measurements is proposed and studied in this work, to overcome the drawbacks of capacitance-voltage (CV) measurements such as time consuming, induction of contanmination and hysteresis effect, etc. Analytical simulations showed behaviors of inverse lifetime (Auger corrected) vs. minority carrier density curves depend on insulator charge densities (Nf). From the curve behavior, the Si surface condition and region of Nf can be estimated. When the silicon surface is at high strong inversion or high accumulation, insulator charge density (Nf) or surface recombination velocity parameters (Sn0 and Sp0) can be determined from the slope of inverse lifetime curves, if the other variable is known. If Sn0 and Sp0 are unknown, Nf values of different samples can be compared as long as all have similar Sn0 and Sp0 values. Using the saturation current density (J0) and intercept fit extracted from the lifetime measurement, the bulk lifetime can be calculated. Therefore, this method is feasible and promising for charged insulator characterization.
ContributorsYang, Qun (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2014
150154-Thumbnail Image.png
Description
As existing solar cell technologies come closer to their theoretical efficiency, new concepts that overcome the Shockley-Queisser limit and exceed 50% efficiency need to be explored. New materials systems are often investigated to achieve this, but the use of existing solar cell materials in advanced concept approaches is compelling for

As existing solar cell technologies come closer to their theoretical efficiency, new concepts that overcome the Shockley-Queisser limit and exceed 50% efficiency need to be explored. New materials systems are often investigated to achieve this, but the use of existing solar cell materials in advanced concept approaches is compelling for multiple theoretical and practical reasons. In order to include advanced concept approaches into existing materials, nanostructures are used as they alter the physical properties of these materials. To explore advanced nanostructured concepts with existing materials such as III-V alloys, silicon and/or silicon/germanium and associated alloys, fundamental aspects of using these materials in advanced concept nanostructured solar cells must be understood. Chief among these is the determination and predication of optimum electronic band structures, including effects such as strain on the band structure, and the material's opto-electronic properties. Nanostructures have a large impact on band structure and electronic properties through quantum confinement. An additional large effect is the change in band structure due to elastic strain caused by lattice mismatch between the barrier and nanostructured (usually self-assembled QDs) materials. To develop a material model for advanced concept solar cells, the band structure is calculated for single as well as vertical array of quantum dots with the realistic effects such as strain, associated with the epitaxial growth of these materials. The results show significant effect of strain in band structure. More importantly, the band diagram of a vertical array of QDs with different spacer layer thickness show significant change in band offsets, especially for heavy and light hole valence bands when the spacer layer thickness is reduced. These results, ultimately, have significance to develop a material model for advance concept solar cells that use the QD nanostructures as absorbing medium. The band structure calculations serve as the basis for multiple other calculations. Chief among these is that the model allows the design of a practical QD advanced concept solar cell, which meets key design criteria such as a negligible valence band offset between the QD/barrier materials and close to optimum band gaps, resulting in the predication of optimum material combinations.
ContributorsDahal, Som Nath (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / Roedel, Ronald (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2011
155086-Thumbnail Image.png
Description
CdTe/MgxCd1-xTe double heterostructures (DHs) have been grown on lattice matched InSb (001) substrates using Molecular Beam Epitaxy. The MgxCd1-xTe layers, which have a wider bandgap and type-I band edge alignment with CdTe, provide sufficient carrier confinement to CdTe, so that the optical properties of CdTe can be studied. The DH

CdTe/MgxCd1-xTe double heterostructures (DHs) have been grown on lattice matched InSb (001) substrates using Molecular Beam Epitaxy. The MgxCd1-xTe layers, which have a wider bandgap and type-I band edge alignment with CdTe, provide sufficient carrier confinement to CdTe, so that the optical properties of CdTe can be studied. The DH samples show very strong Photoluminescence (PL) intensity, long carrier lifetimes (up to 3.6 μs) and low effective interface recombination velocity at the CdTe/MgxCd1 xTe heterointerface (~1 cm/s), indicating the high material quality. Indium has been attempted as an n-type dopant in CdTe and it is found that the carriers are 100% ionized in the doping range of 1×1016 cm-3 to 1×1018 cm-3. With decent doping levels, long minority carrier lifetime, and almost perfect surface passivation by the MgxCd1-xTe layer, the CdTe/MgxCd1-xTe DHs are applied to high efficiency CdTe solar cells. Monocrystalline CdTe solar cells with efficiency of 17.0% and a record breaking open circuit voltage of 1.096 V have been demonstrated in our group.

Mg0.13Cd0.87Te (1.7 eV), also with high material quality, has been proposed as a current matching cell to Si (1.1 eV) solar cells, which could potentially enable a tandem solar cell with high efficiency and thus lower the electricity cost. The properties of Mg0.13Cd0.87Te/Mg0.5Cd0.5Te DHs and solar cells have been investigated. Carrier lifetime as long as 0.56 μs is observed and a solar cell with 11.2% efficiency and open circuit voltage of 1.176 V is demonstrated.

The CdTe/MgxCd1-xTe DHs could also be potentially applied to luminescence refrigeration, which could be used in vibration-free space applications. Both external luminescence quantum efficiency and excitation-dependent PL measurement show that the best quality samples are almost 100% dominated by radiative recombination, and calculation shows that the internal quantum efficiency can be as high as 99.7% at the optimal injection level (1017 cm-3). External luminescence quantum efficiency of over 98% can be realized for luminescence refrigeration with the proper design of optical structures.
ContributorsZhao, Xinhao (Author) / Zhang, Yong-Hang (Thesis advisor) / Johnson, Shane (Committee member) / Holman, Zachary (Committee member) / Chowdhury, Srabanti (Committee member) / He, Ximin (Committee member) / Arizona State University (Publisher)
Created2016
155905-Thumbnail Image.png
Description
It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch (~0.4%) to Si enables coherent/pseudomorphic epitaxial

It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch (~0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells.

Despite the promising potential of GaP/Si heterojunction solar cells, there are two main obstacles to realize high performance photovoltaic devices from this structure. First, the growth of the polar material (GaP) on the non-polar material (Si) is a challenge in how to suppress the formation of structural defects, such as anti-phase domains (APD). Further, it is widely observed that the minority-carrier lifetime of the Si substrates is significantly decreased during epitaxially growth of GaP on Si.

In this dissertation, two different GaP growth methods were compared and analyzed, including migration-enhanced epitaxy (MEE) and traditional molecular beam epitaxy (MBE). High quality GaP can be realized on precisely oriented (001) Si substrates by MBE growth, and the investigation of structural defect creation in the GaP/Si epitaxial structures was conducted using high resolution X-ray diffraction (HRXRD) and high resolution transmission electron microscopy (HRTEM).

The mechanisms responsible for lifetime degradation were further investigated, and it was found that external fast diffusors are the origin for the degradation. Two practical approaches including the use of both a SiNx diffusion barrier layer and P-diffused layers, to suppress the Si minority-carrier lifetime degradation during GaP epitaxial growth on Si by MBE were proposed. To achieve high performance of GaP/Si solar cells, different GaP/Si structures were designed, fabricated and compared, including GaP as a hetero-emitter, GaP as a heterojunction on the rear side, inserting passivation membrane layers at the GaP/Si interface, and GaP/wet-oxide functioning as a passivation contact. A designed of a-Si free carrier-selective contact MoOx/Si/GaP solar cells demonstrated 14.1% power conversion efficiency.
ContributorsZhang, Chaomin (Author) / Honsberg, Christiana (Thesis advisor) / King, Richard (Thesis advisor) / Goodnick, Stephen (Committee member) / Faleev, Nikolai (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2017
154021-Thumbnail Image.png
Description
The development of high efficiency III-V solar cells is needed to meet the demands of a promising renewable energy source. Intermediate band solar cells (IBSCs) using semiconductor quantum dots (QDs) have been proposed to exceed the Shockley-Queisser efficiency limit [1]. The introduction of an IB in the forbidden gap of

The development of high efficiency III-V solar cells is needed to meet the demands of a promising renewable energy source. Intermediate band solar cells (IBSCs) using semiconductor quantum dots (QDs) have been proposed to exceed the Shockley-Queisser efficiency limit [1]. The introduction of an IB in the forbidden gap of host material generates two additional carrier transitions for sub-bandgap photon absorption, leading to increased photocurrent of IBSCs while simultaneously allowing an open-circuit voltage of the highest band gap. To realize a high efficiency IBSC, QD structures should have high crystal quality and optimized electronic properties. This dissertation focuses on the investigation and optimization of the structural and optical properties of InAs/GaAsSb QDs and the development of InAs/GaAsSb QD-based IBSCs.

In the present dissertation, the interband optical transition and carrier lifetime of InAs/GaAsSb QDs with different silicon delta-doping densities have been first studied by time-integrated and time-resolved photoluminescence (PL). It is found that an optimized silicon delta-doping density in the QDs enables to fill the QD electronic states with electrons for sub-bandgap photon absorption and to improve carrier lifetime of the QDs.

After that, the crystal quality and QD morphology of single- and multi-stack InAs/GaAsSb QDs with different Sb compositions have been investigated by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The TEM studies reveal that QD morphology of single-stack QDs is affected by Sb composition due to strain reducing effect of Sb incorporation. The XRD studies confirm that the increase of Sb composition increases the lattice mismatch between GaAs matrix and GaAsSb spacers, resulting in increase of the strain relaxation in GaAsSb of the multi-stack QDs. Furthermore, the increase of Sb composition causes a PL redshift and increases carrier lifetime of QDs.

Finally, the spacer layer thickness of multi-stack InAs/GaAsSb QDs is optimized for the growth of InAs/GaAsSb QD solar cells (QDSCs). The InAs/GaAsSb QDSCs with GaP strain compensating layer are grown and their device performances are characterized. The increase of GaP coverage is beneficial to improve the conversion efficiency of the QDSCs. However, the conversion efficiency is reduced when using a relatively large GaP coverage.
ContributorsKim, Yeongho (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / Faleev, Nikolai (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2015
157640-Thumbnail Image.png
Description
Silicon photonic technology continues to dominate the solar industry driven by steady improvement in device and module efficiencies. Currently, the world record conversion efficiency (~26.6%) for single junction silicon solar cell technologies is held by silicon heterojunction (SHJ) solar cells based on hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si).

Silicon photonic technology continues to dominate the solar industry driven by steady improvement in device and module efficiencies. Currently, the world record conversion efficiency (~26.6%) for single junction silicon solar cell technologies is held by silicon heterojunction (SHJ) solar cells based on hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). These solar cells utilize the concept of carrier selective contacts to improve device efficiencies. A carrier selective contact is designed to optimize the collection of majority carriers while blocking the collection of minority carriers. In the case of SHJ cells, a thin intrinsic a-Si:H layer provides crucial passivation between doped a-Si:H and the c-Si absorber that is required to create a high efficiency cell. There has been much debate regarding the role of the intrinsic a-Si:H passivation layer on the transport of photogenerated carriers, and its role in optimizing device performance. In this work, a multiscale model is presented which utilizes different simulation methodologies to study interfacial transport across the intrinsic a-Si:H/c-Si heterointerface and through the a-Si:H passivation layer. In particular, an ensemble Monte Carlo simulator was developed to study high field behavior of photogenerated carriers at the intrinsic a-Si:H/c-Si heterointerface, a kinetic Monte Carlo program was used to study transport of photogenerated carriers across the intrinsic a-Si:H passivation layer, and a drift-diffusion model was developed to model the behavior in the quasi-neutral regions of the solar cell. This work reports de-coupled and self-consistent simulations to fully understand the role and effect of transport across the a-Si:H passivation layer in silicon heterojunction solar cells, and relates this to overall solar cell device performance.
ContributorsMuralidharan, Pradyumna (Author) / Goodnick, Stephen M (Thesis advisor) / Vasileska, Dragica (Thesis advisor) / Honsberg, Christiana (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2019