Matching Items (4)
Filtering by

Clear all filters

133488-Thumbnail Image.png
Description
Current solar cells use a silver-printed front grid for electron conduction. Unfortunately, silver is expensive, leading to research into alternative materials. Copper is the most viable but poses grain growth problems and stress problems silver does not. This paper has characterised the effects of proprietary additives, thickness of the copper

Current solar cells use a silver-printed front grid for electron conduction. Unfortunately, silver is expensive, leading to research into alternative materials. Copper is the most viable but poses grain growth problems and stress problems silver does not. This paper has characterised the effects of proprietary additives, thickness of the copper film layer, current density, and grain growth on stress. Per Stoney's equation, increased thickness leads to decreased thickness. However, if the current density is too high, the plated copper will become porous. Grain growth, quantified by the ratio of the intensity of the (1 1 1) plane and the (2 0 0) plane, increases over time, thus increasing the ratio which further equations to increased stress. Future work would be gathering more data to further investigate the relationship between additives and stress, current densities and stress, and grain growth over time and stress.
ContributorsSimonet, Danny (Co-author) / Chang, Celine (Co-author) / Bowden, Stuart (Thesis director) / Karas, Joseph (Committee member) / Division of Teacher Preparation (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137699-Thumbnail Image.png
DescriptionExploring solar cell model alternatives using electrochemically deposited dendrites as a form of current collection to increase efficiency and top electrode transparency.
ContributorsKrawczyk, Joseph Robert (Author) / Kozicki, Michael (Thesis director) / Roedel, Ronald (Committee member) / Gonzalez Velo, Yago (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
Description

To reduce the cost of silicon solar cells and improve their efficiency, it is crucial to identify and understand the defects limiting the electrical performance in silicon wafers. Bulk defects in semiconductors produce discrete energy levels within the bandgap and may act as recombination centers. This project investigates the viability

To reduce the cost of silicon solar cells and improve their efficiency, it is crucial to identify and understand the defects limiting the electrical performance in silicon wafers. Bulk defects in semiconductors produce discrete energy levels within the bandgap and may act as recombination centers. This project investigates the viability of using machine learning for characterizing bulk defects in Silicon by using a Random Forest Regressor to extract the defect energy level and capture cross section ratios for a simulated Molybdenum defect and experimental Silicon Vacancy defect. Additionally, a dual convolutional neural network is used to classify the defect energy level in the upper or lower half bandgap.

ContributorsWoo, Vanessa (Author) / Bertoni, Mariana (Thesis director) / Rolston, Nicholas (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05
160983-Thumbnail Image.png
Description

The goal of the presented research is using Electro Field-assisted Nano Ink Writing(EF-NIW) to deposit poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, or PEDOT, on a substrate to serve as a basis for designing high-efficiency, scalable solar cells. Through the analysis of parameters that affect electrospray deposition, methods to accurately produce a PEDOT film

The goal of the presented research is using Electro Field-assisted Nano Ink Writing(EF-NIW) to deposit poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, or PEDOT, on a substrate to serve as a basis for designing high-efficiency, scalable solar cells. Through the analysis of parameters that affect electrospray deposition, methods to accurately produce a PEDOT film will be determined. With the finished, contingent film, tests for efficacy can be performed. The film will be analyzed for profilometry, determining the thickness of the film. The film will then be put up to a conductivity test.

ContributorsHutchins, John (Author) / Li, Xiangjia (Thesis director) / Zhu, Yizhen (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2021-12