Matching Items (7)
Filtering by

Clear all filters

152285-Thumbnail Image.png
Description
Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient

Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient and low cost technique for large area and uniform deposition of semiconductor thin films. In particular, it provides an easier way to dope the film by simply adding the dopant precursor into the starting solution. In order to reduce the resistivity of undoped ZnO, many works have been done by doping in the ZnO with either group IIIA elements or VIIA elements using spray pyrolysis. However, the resistivity is still too high to meet TCO's resistivity requirement. In the present work, a novel co-spray deposition technique is developed to bypass a fundamental limitation in the conventional spray deposition technique, i.e. the deposition of metal oxides from incompatible precursors in the starting solution. With this technique, ZnO films codoped with one cationic dopant, Al, Cr, or Fe, and an anionic dopant, F, have been successfully synthesized, in which F is incompatible with all these three cationic dopants. Two starting solutions were prepared and co-sprayed through two separate spray heads. One solution contained only the F precursor, NH 4F. The second solution contained the Zn and one cationic dopant precursors, Zn(O 2CCH 3) 2 and AlCl 3, CrCl 3, or FeCl 3. The deposition was carried out at 500 &degC; on soda-lime glass in air. Compared to singly-doped ZnO thin films, codoped ZnO samples showed better electrical properties. Besides, a minimum sheet resistance, 55.4 Ω/sq, was obtained for Al and F codoped ZnO films after vacuum annealing at 400 &degC;, which was lower than singly-doped ZnO with either Al or F. The transmittance for the Al and F codoped ZnO samples was above 90% in the visible range. This co-spray deposition technique provides a simple and cost-effective way to synthesize metal oxides from incompatible precursors with improved properties.
ContributorsZhou, Bin (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2013
156761-Thumbnail Image.png
Description
The objective of this thesis is to achieve a detailed understanding of the loss mechanisms in SHJ solar cells. The working principles of these cells and what affects the cell operation, e.g. the IV characteristics at the maximum power point (MPP) and the correspondingly ll factor (FF) are investigated. Dierent

The objective of this thesis is to achieve a detailed understanding of the loss mechanisms in SHJ solar cells. The working principles of these cells and what affects the cell operation, e.g. the IV characteristics at the maximum power point (MPP) and the correspondingly ll factor (FF) are investigated. Dierent loss sources are analyzed separately, and the weight of each in the total loss at the MPP are evaluated. The total series resistance is measured and then compared with the value obtained through summation over each of its components. In other words, series resistance losses due to recombination, vertical and lateral carrier transport, metalization, etc, are individually evaluated, and then by adding all these components together, the total loss is calculated. The concept of ll factor and its direct dependence on the loss mechanisms at the MPP of the device is explained, and its sensitivity to nearly every processing step of the cell fabrication is investigated. This analysis provides a focus lens to identify the main source of losses in SHJ solar cells and pave the path for further improvements in cell efficiency.

In this thesis, we provide a detailed understanding of the FF concept; we explain how it can be directly measured; how it can be calculated and what expressions can better approximate its value and under what operating conditions. The relation between FF and cell operating condition at the MPP is investigated. We separately analyzed the main FF sources of losses including recombination, sheet resistance, contact resistance and metalization. We study FF loss due to recombination and its separate components which include the Augur, radiative and SRH recombination is investigated. We study FF loss due to contact resistance and its separate components which include the contact resistance of dierent interfaces, e.g. between the intrinsic and doped a-Si layers, TCO and a-Si layers. We also study FF loss due to lateral transport and its components that including the TCO sheet resistance, the nger and the busbars resistances.
ContributorsLeilaeioun, Mohammadmehdi (Ashling) (Author) / Goodnick, Stephen (Thesis advisor) / Goryll, Michael (Thesis advisor) / Bertoni, Mariana (Committee member) / Bowden, Stuart (Committee member) / Stuckelberger, Michael (Committee member) / Arizona State University (Publisher)
Created2018
157247-Thumbnail Image.png
Description
Photovoltaics (PV) is one of the promising options for maintaining sustainable energy supply because it is environmentally friendly, a non-polluting and low-maintenance energy source. Despite the many advantages of PV, solar energy currently accounts for only 1% of the global energy portfolio for electricity generation. This is because the cost

Photovoltaics (PV) is one of the promising options for maintaining sustainable energy supply because it is environmentally friendly, a non-polluting and low-maintenance energy source. Despite the many advantages of PV, solar energy currently accounts for only 1% of the global energy portfolio for electricity generation. This is because the cost of electricity from PV remains about a factor of two higher than the fossil fuel (10¢/kWh). Widely-used commercial methods employed to generate PV energy, such as silicon or thin film-based technologies, are still expensive as they are processed through vacuum-based techniques. Therefore, it is desirable to find an alternative method that is open-air and continuous process for the mass production of solar cells.

The objective of the research in this thesis is to develop low-cost spray pyrolysis technique to synthesize oxides thin films for applications in solar cells. Chapter 4 and 5 discuss spray-deposited dielectric oxides for their applications in Si solar cells. In Chapter 4, a successful deposition of Al2O3 is demonstrated using water as the solvent which ensures a lower cost and safer process environment. Optical, electrical, and structural properties of spray-deposited Al2O3 are investigated and compared to the industrial standard Atomic Layer Deposition (ALD) Al2O3/Plasma Enhanced Chemical Vapor Deposition (PECVD) SiNx stack, to reveal the suitability of spray-deposited Al2O3 for rear passivation and optical trapping in p-type Si Passivated Emitter and Rear Cell (PERC) solar cells. In Chapter 5, The possibility of using low-cost spray-deposited ZrO2 as the antireflection coating for Si solar cells is investigated. Optical, electrical and structural properties of spray-deposited ZrO2 films are studied and compared to the industrial standard antireflection coating PECVD SiNx. In Chapter 6, spray-deposited hematite Fe2O3 and sol-gel prepared anatase TiO2 thin films are sulfurized by annealing in H2S to investigate the band gap narrowing by sulfur doping and explore the possibility of using ternary semiconductors for their application as solar absorbers.
ContributorsShin, Woo Jung (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Wang, Qing Hua (Committee member) / Arizona State University (Publisher)
Created2019
154720-Thumbnail Image.png
Description
A basic theory and terminology that comprehensively applies to all different types

of contacts in silicon solar cells has, thus far, been elusive. While the well established diode model has been applied to many of the complex contacts, the theory is not adequate to intuitively describe the characteristics of novel contacts.

A basic theory and terminology that comprehensively applies to all different types

of contacts in silicon solar cells has, thus far, been elusive. While the well established diode model has been applied to many of the complex contacts, the theory is not adequate to intuitively describe the characteristics of novel contacts. This thesis shows that the many desirable characteristics of contacts that are discussed in the literature—carrier selectivity, passivation, and low majority carrier conductance, key among them—originate from the resistance to electrons and holes in the contact. These principles are applied to describe a few popular contact technologies in order to pave the path to envisioning novel contacts. Metrics for contact performance is introduced to quantify each of the above characteristics using the two carrier resistances. The the validity of the proposed metrics is explored using extensive PC-1D simulations.
ContributorsKoswatta, Priyaranga L (Author) / Holman, Zachary C (Thesis advisor) / King, Richard (Committee member) / Bertoni, Mariana (Committee member) / Arizona State University (Publisher)
Created2016
155905-Thumbnail Image.png
Description
It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch (~0.4%) to Si enables coherent/pseudomorphic epitaxial

It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch (~0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells.

Despite the promising potential of GaP/Si heterojunction solar cells, there are two main obstacles to realize high performance photovoltaic devices from this structure. First, the growth of the polar material (GaP) on the non-polar material (Si) is a challenge in how to suppress the formation of structural defects, such as anti-phase domains (APD). Further, it is widely observed that the minority-carrier lifetime of the Si substrates is significantly decreased during epitaxially growth of GaP on Si.

In this dissertation, two different GaP growth methods were compared and analyzed, including migration-enhanced epitaxy (MEE) and traditional molecular beam epitaxy (MBE). High quality GaP can be realized on precisely oriented (001) Si substrates by MBE growth, and the investigation of structural defect creation in the GaP/Si epitaxial structures was conducted using high resolution X-ray diffraction (HRXRD) and high resolution transmission electron microscopy (HRTEM).

The mechanisms responsible for lifetime degradation were further investigated, and it was found that external fast diffusors are the origin for the degradation. Two practical approaches including the use of both a SiNx diffusion barrier layer and P-diffused layers, to suppress the Si minority-carrier lifetime degradation during GaP epitaxial growth on Si by MBE were proposed. To achieve high performance of GaP/Si solar cells, different GaP/Si structures were designed, fabricated and compared, including GaP as a hetero-emitter, GaP as a heterojunction on the rear side, inserting passivation membrane layers at the GaP/Si interface, and GaP/wet-oxide functioning as a passivation contact. A designed of a-Si free carrier-selective contact MoOx/Si/GaP solar cells demonstrated 14.1% power conversion efficiency.
ContributorsZhang, Chaomin (Author) / Honsberg, Christiana (Thesis advisor) / King, Richard (Thesis advisor) / Goodnick, Stephen (Committee member) / Faleev, Nikolai (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2017
157733-Thumbnail Image.png
Description
A Fundamental study of bulk, layered, and monolayers bromide lead perovskites structural, optical, and electrical properties have been studied as thickness changes. X-Ray Diffraction (XRD) and Raman spectroscopy measures the structural parameter showing how the difference in the thicknesses changes the crystal structures through observing changes in average lattice constant,

A Fundamental study of bulk, layered, and monolayers bromide lead perovskites structural, optical, and electrical properties have been studied as thickness changes. X-Ray Diffraction (XRD) and Raman spectroscopy measures the structural parameter showing how the difference in the thicknesses changes the crystal structures through observing changes in average lattice constant, atomic spacing, and lattice vibrations.

Optical and electrical properties have also been studied mainly focusing on the thickness effect on different properties where the Photoluminescence (PL) and exciton binding energies show energy shift as thickness of the material changes. Temperature dependent PL has shown different characteristics when comparing methylammonium lead bromide (MAPbBr3) to butylammonium lead bromide (BA2PbBr4) and comparing the two layered n=1 materials butylammonium lead bromide (BA2PbBr4) to butylammonium lead iodide (BA2PbI4). Time-resolved spectroscopy displays different lifetimes as thickness of bromide-based perovskite changes. Finally, thickness dependence (starting from monolayers) Kelvin Probe Force Microscopy (KPFM) of the layered materials BA2PbBr4, Butylammonium(methylammonium)lead bromide (BA2MAPb2Br7), and molybdenum sulfide (MoS2) were studied showing an exponential relation between the thickness of the materials and their surface potentials.
ContributorsAlenezi, Omar (Author) / Tongay, Sefaattin (Thesis advisor) / King, Richard (Thesis advisor) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2019
155190-Thumbnail Image.png
Description
Cadmium Telluride (CdTe) possesses preferable optical properties for photovoltaic (PV) applications: a near optimum bandgap of 1.5 eV, and a high absorption coefficient of over 15,000 cm-1 at the band edge. The detailed-balance limiting efficiency is 32.1% with an open-circuit voltage (Voc) of 1.23 V under the AM1.5G spectrum. The

Cadmium Telluride (CdTe) possesses preferable optical properties for photovoltaic (PV) applications: a near optimum bandgap of 1.5 eV, and a high absorption coefficient of over 15,000 cm-1 at the band edge. The detailed-balance limiting efficiency is 32.1% with an open-circuit voltage (Voc) of 1.23 V under the AM1.5G spectrum. The record polycrystalline CdTe thin-film cell efficiency has reached 22.1%, with excellent short-circuit current densities (Jsc) and fill-factors (FF). However, the Voc (~900 mV) is still far below the theoretical value, due to the large non-radiative recombination in the polycrystalline CdTe absorber, and the low-level p-type doping.

Monocrystalline CdTe/MgCdTe double-heterostructures (DHs) grown on lattice-matched InSb substrates have demonstrated impressively long carrier lifetimes in both unintentionally doped and Indium-doped n-type CdTe samples. The non-radiative recombination inside of, and at the interfaces of the CdTe absorbers in CdTe/MgCdTe DH samples has been significantly reduced due to the use of lattice-matched InSb substrates, and the excellent passivation provided by the MgCdTe barrier layers. The external luminescent quantum efficiency (η_ext) of n-type CdTe/MgCdTe DHs is up to 3.1%, observed from a 1-µm-thick CdTe/MgCdTe DH doped at 1017 cm-3. The 3.1% η_ext corresponds to an internal luminescent quantum efficiency (η_int) of 91%. Such a high η_ext gives an implied Voc, or quasi-Fermi-level splitting, of 1.13 V.

To obtain actual Voc, the quasi-Fermi-level splitting should be extracted to outside the circuit using a hole-selective contact layer. However, CdTe is difficult to be doped p-type, making it challenging to make efficient PN junction CdTe solar cells. With the use of MgCdTe barrier layers, the hole-contact layer can be defective without affecting the voltage. P-type hydrogenated amorphous silicon is an effective hole-selective contact for CdTe solar cells, enabling monocrystalline CdTe/MgCdTe DH solar cells to achieve Voc over 1.1 V, and a maximum active area efficiency of 18.8% (Jsc = 23.3 mA/cm2, Voc = 1.114 V, and FF = 72.3%). The knowledge gained through making the record-efficiency monocrystalline CdTe cell, particularly the n-type doping and the double-heterostructure design, may be transferable to polycrystalline CdTe thin-film cells and improve their competitiveness in the PV industry.
ContributorsZhao, Yuan (Author) / Zhang, Yong-Hang (Thesis advisor) / Bertoni, Mariana (Committee member) / King, Richard (Committee member) / Holman, Zachary (Committee member) / Arizona State University (Publisher)
Created2016