Matching Items (11)
Filtering by

Clear all filters

152285-Thumbnail Image.png
Description
Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient

Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient and low cost technique for large area and uniform deposition of semiconductor thin films. In particular, it provides an easier way to dope the film by simply adding the dopant precursor into the starting solution. In order to reduce the resistivity of undoped ZnO, many works have been done by doping in the ZnO with either group IIIA elements or VIIA elements using spray pyrolysis. However, the resistivity is still too high to meet TCO's resistivity requirement. In the present work, a novel co-spray deposition technique is developed to bypass a fundamental limitation in the conventional spray deposition technique, i.e. the deposition of metal oxides from incompatible precursors in the starting solution. With this technique, ZnO films codoped with one cationic dopant, Al, Cr, or Fe, and an anionic dopant, F, have been successfully synthesized, in which F is incompatible with all these three cationic dopants. Two starting solutions were prepared and co-sprayed through two separate spray heads. One solution contained only the F precursor, NH 4F. The second solution contained the Zn and one cationic dopant precursors, Zn(O 2CCH 3) 2 and AlCl 3, CrCl 3, or FeCl 3. The deposition was carried out at 500 &degC; on soda-lime glass in air. Compared to singly-doped ZnO thin films, codoped ZnO samples showed better electrical properties. Besides, a minimum sheet resistance, 55.4 Ω/sq, was obtained for Al and F codoped ZnO films after vacuum annealing at 400 &degC;, which was lower than singly-doped ZnO with either Al or F. The transmittance for the Al and F codoped ZnO samples was above 90% in the visible range. This co-spray deposition technique provides a simple and cost-effective way to synthesize metal oxides from incompatible precursors with improved properties.
ContributorsZhou, Bin (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2013
153098-Thumbnail Image.png
Description
There has been recent interest in demonstrating solar cells which approach the detailed-balance or thermodynamic efficiency limit in order to establish a model system for which mass-produced solar cells can be designed. Polycrystalline CdS/CdTe heterostructures are currently one of many competing solar cell material systems. Despite being polycrystalline, efficiencies u

There has been recent interest in demonstrating solar cells which approach the detailed-balance or thermodynamic efficiency limit in order to establish a model system for which mass-produced solar cells can be designed. Polycrystalline CdS/CdTe heterostructures are currently one of many competing solar cell material systems. Despite being polycrystalline, efficiencies up to 21 % have been demonstrated by the company First Solar. However, this efficiency is still far from the detailed-balance limit of 32.1 % for CdTe. This work explores the use of monocrystalline CdTe/MgCdTe and ZnTe/CdTe/MgCdTe double heterostructures (DHs) grown on (001) InSb substrates by molecular beam epitaxy (MBE) for photovoltaic applications.

Undoped CdTe/MgCdTe DHs are first grown in order to determine the material quality of the CdTe epilayer and to optimize the growth conditions. DH samples show strong photoluminescence with over double the intensity as that of a GaAs/AlGaAs DH with an identical layer structure. Time-resolved photoluminescence of the CdTe/MgCdTe DH gives a carrier lifetime of up to 179 ns for a 2 µm thick CdTe layer, which is more than one order of magnitude longer than that of polycrystalline CdTe films. MgCdTe barrier layers are found to be effective at confining photogenerated carriers and have a relatively low interface recombination velocity of 461 cm/s. The optimal growth temperature and Cd/Te flux ratio is determined to be 265 °C and 1.5, respectively.

Monocrystalline ZnTe/CdTe/MgCdTe P-n-N DH solar cells are designed, grown, processed into solar cell devices, and characterized. A maximum efficiency of 6.11 % is demonstrated for samples without an anti-reflection coating. The low efficiency is mainly due to the low open-circuit voltage (Voc), which is attributed to high dark current caused by interface recombination at the ZnTe/CdTe interface. Low-temperature measurements show a linear increase in Voc with decreasing temperature down to 77 K, which suggests that the room-temperature operation is limited by non-radiative recombination. An open-circuit voltage of 1.22 V and an efficiency of 8.46 % is demonstrated at 77 K. It is expected that a coherently strained MgCdTe/CdTe/MgCdTe DH solar cell design will produce higher efficiency and Voc compared to the ZnTe/CdTe/MgCdTe design with relaxed ZnTe layer.
ContributorsDiNezza, Michael John (Author) / Zhang, Yong-Hang (Thesis advisor) / Johnson, Shane (Committee member) / Tao, Meng (Committee member) / Holman, Zachary (Committee member) / Arizona State University (Publisher)
Created2014
153047-Thumbnail Image.png
Description
This dissertation aims to demonstrate a new approach to fabricating solar cells for spectrum-splitting photovoltaic systems with the potential to reduce their cost and complexity of manufacturing, called Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells. Single crystal semiconductor alloy nanowire (NW) ensembles are grown with the alloy

This dissertation aims to demonstrate a new approach to fabricating solar cells for spectrum-splitting photovoltaic systems with the potential to reduce their cost and complexity of manufacturing, called Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells. Single crystal semiconductor alloy nanowire (NW) ensembles are grown with the alloy composition and band gap changing continuously across a broad range over the surface of a single substrate in a single, inexpensive growth step by the Dual-Gradient Method. The nanowire ensembles then serve as the absorbing materials in a set of solar cells for spectrum-splitting photovoltaic systems.

Preliminary design and simulation studies based on Anderson's model band line-ups were undertaken for CdPbS and InGaN alloys. Systems of six subcells obtained efficiencies in the 32-38% range for CdPbS and 34-40% for InGaN at 1-240 suns, though both materials systems require significant development before these results could be achieved experimentally. For an experimental demonstration, CdSSe was selected due to its availability. Proof-of-concept CdSSe nanowire ensemble solar cells with two subcells were fabricated simultaneously on one substrate. I-V characterization under 1 sun AM1.5G conditions yielded open-circuit voltages (Voc) up to 307 and 173 mV and short-circuit current densities (Jsc) up to 0.091 and 0.974 mA/cm2 for the CdS- and CdSe-rich cells, respectively. Similar thin film cells were also fabricated for comparison. The nanowire cells showed substantially higher Voc than the film cells, which was attributed to higher material quality in the CdSSe absorber. I-V measurements were also conducted with optical filters to simulate a simple form of spectrum-splitting. The CdS-rich cells showed uniformly higher Voc and fill factor (FF) than the CdSe-rich cells, as expected due to their larger band gaps. This suggested higher power density was produced by the CdS-rich cells on the single-nanowire level, which is the principal benefit of spectrum-splitting. These results constitute a proof-of-concept experimental demonstration of the MILAMB approach to fabricating multiple cells for spectrum-splitting photovoltaics. Future systems based on this approach could help to reduce the cost and complexity of manufacturing spectrum-splitting photovoltaic systems and offer a low cost alternative to multi-junction tandems for achieving high efficiencies.
ContributorsCaselli, Derek (Author) / Ning, Cun-Zheng (Thesis advisor) / Tao, Meng (Committee member) / Yu, Hongbin (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2014
151142-Thumbnail Image.png
Description
This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on

This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on GaSb or InAs substrates for current-matched subcells with minimal defect densities. CdSe/CdTe superlattices are proposed as a potential candidate for a subcell in the MJ solar cell designs using this material system, and therefore the material properties of the superlattices are studied. The high structural qualities of the superlattices are obtained from high resolution X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The effective bandgap energies of the superlattices obtained from the photoluminescence (PL) measurements vary with the layer thicknesses, and are smaller than the bandgap energies of either the constituent material. Furthermore, The PL peak position measured at the steady state exhibits a blue shift that increases with the excess carrier concentration. These results confirm a strong type-II band edge alignment between CdSe and CdTe. The valence band offset between unstrained CdSe and CdTe is determined as 0.63 eV±0.06 eV by fitting the measured PL peak positions using the Kronig-Penney model. The blue shift in PL peak position is found to be primarily caused by the band bending effect based on self-consistent solutions of the Schrödinger and Poisson equations. Secondly, the design of the contact grid layout is studied to maximize the power output and energy conversion efficiency for concentrator solar cells. Because the conventional minimum power loss method used for the contact design is not accurate in determining the series resistance loss, a method of using a distributed series resistance model to maximize the power output is proposed for the contact design. It is found that the junction recombination loss in addition to the series resistance loss and shadowing loss can significantly affect the contact layout. The optimal finger spacing and maximum efficiency calculated by the two methods are close, and the differences are dependent on the series resistance and saturation currents of solar cells. Lastly, the accurate measurements of external quantum efficiency (EQE) are important for the design and development of MJ solar cells. However, the electrical and optical couplings between the subcells have caused EQE measurement artifacts. In order to interpret the measurement artifacts, DC and small signal models are built for the bias condition and the scan of chopped monochromatic light in the EQE measurements. Characterization methods are developed for the device parameters used in the models. The EQE measurement artifacts are found to be caused by the shunt and luminescence coupling effects, and can be minimized using proper voltage and light biases. Novel measurement methods using a pulse voltage bias or a pulse light bias are invented to eliminate the EQE measurement artifacts. These measurement methods are nondestructive and easy to implement. The pulse voltage bias or pulse light bias is superimposed on the conventional DC voltage and light biases, in order to control the operating points of the subcells and counterbalance the effects of shunt and luminescence coupling. The methods are demonstrated for the first time to effectively eliminate the measurement artifacts.
ContributorsLi, Jingjing (Author) / Zhang, Yong-Hang (Thesis advisor) / Tao, Meng (Committee member) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
156366-Thumbnail Image.png
Description
It is well known that the overall performance of a solar cell is limited by the worst performing areas of the device. These areas are usually micro and nano-scale defects inhomogenously distributed throughout the material. Mitigating and/or engineering these effects is necessary to provide a path towards increasing the efficiency

It is well known that the overall performance of a solar cell is limited by the worst performing areas of the device. These areas are usually micro and nano-scale defects inhomogenously distributed throughout the material. Mitigating and/or engineering these effects is necessary to provide a path towards increasing the efficiency of state-of-the-art solar cells. The first big challenge is to identify the nature, origin and impact of such defects across length scales that span multiple orders of magnitude, and dimensions (time, temperature etc.). In this work, I present a framework based on correlative X-ray microscopy and big data analytics to identify micro and nanoscale defects and their impact on material properties in CuIn1-xGaxSe2 (CIGS) solar cells.

Synchrotron based X-ray Fluorescence (XRF) and X-ray Beam Induced Current (XBIC) are used to study the effect that compositional variations, between grains and at grain boundaries, have on CIGS device properties. An experimental approach is presented to correcting XRF and XBIC quantification of CIGS thin film solar cells. When applying XRF and XBIC to study low and high gallium CIGS devices, it was determined that increased copper and gallium at grain boundaries leads to increased collection efficiency at grain boundaries in low gallium absorbers. However, composition variations were not correlated with changes in collection efficiency in high gallium absorbers, despite the decreased collection efficiency observed at grain boundaries.

Understanding the nature and impact of these defects is only half the battle; controlling or mitigating their impact is the next challenge. This requires a thorough understanding of the origin of these defects and their kinetics. For such a study, a temperature and atmosphere controlled in situ stage was developed. The stage was utilized to study CIGS films during a rapid thermal growth process. Comparing composition variations across different acquisition times and growth temperatures required the implementation of machine learning techniques, including clustering and classification algorithms. From the analysis, copper was determined to segregate the faster than indium and gallium, and clustering techniques showed consistent elemental segregation into copper rich and copper poor regions. Ways to improve the current framework and new applications are also discussed.
ContributorsWest, Bradley (Author) / Bertoni, Mariana I (Thesis advisor) / Verebelyi, Darren (Committee member) / Holman, Zachary (Committee member) / Rose, Volker (Committee member) / Arizona State University (Publisher)
Created2018
156609-Thumbnail Image.png
Description
Achieving high efficiency in solar cells requires optimal photovoltaics materials for light absorption and as with any electrical device—high-quality contacts. Essentially, the contacts separate the charge carriers—holes at one terminal and electrons at the other—extracting them to an external circuit. For this purpose, the development of passivating and carrier-selective contacts

Achieving high efficiency in solar cells requires optimal photovoltaics materials for light absorption and as with any electrical device—high-quality contacts. Essentially, the contacts separate the charge carriers—holes at one terminal and electrons at the other—extracting them to an external circuit. For this purpose, the development of passivating and carrier-selective contacts that enable low interface defect density and efficient carrier transport is critical for making high-efficiency solar cells. The recent record-efficiency n-type silicon cells with hydrogenated amorphous silicon (a-Si:H) contacts have demonstrated the usefulness of passivating and carrier-selective contacts. However, the use of a-Si:H contacts should not be limited in just n-type silicon cells.

In the present work, a-Si:H contacts for crystalline silicon and cadmium telluride (CdTe) solar cells are developed. First, hydrogen-plasma-processsed a-Si:H contacts are used in n-type Czochralski silicon cell fabrication. Hydrogen plasma treatment is used to increase the Si-H bond density of a-Si:H films and decrease the dangling bond density at the interface, which leads to better interface passivation and device performance, and wider temperature-processing window of n-type silicon cells under full spectrum (300–1200 nm) illumination. In addition, thickness-varied a-Si:H contacts are studied for n-type silicon cells under the infrared spectrum (700–1200 nm) illumination, which are prepared for silicon-based tandem applications.

Second, the a-Si:H contacts are applied to commercial-grade p-type silicon cells, which have much lower bulk carrier lifetimes than the n-type silicon cells. The approach is using gettering and bulk hydrogenation to improve the p-type silicon bulk quality, and then applying a-Si:H contacts to enable excellent surface passivation and carrier transport. This leads to an open-circuit voltage of 707 mV in p-type Czochralski silicon cells, and of 702 mV, the world-record open-circuit voltage in p-type multi-crystalline silicon cells.

Finally, CdTe cells with p-type a-Si:H hole-selective contacts are studied. As a proof of concept, p-type a-Si:H contacts enable achieving the highest reported open-circuit voltages (1.1 V) in mono-crystalline CdTe devices. A comparative study of applying p-type a-Si:H contacts in poly-crystalline CdTe solar cells is performed, resulting in absolute voltage gain of 53 mV over using the standard tellurium contacts.
ContributorsShi, Jianwei (Author) / Holman, Zachary (Thesis advisor) / Bowden, Stuart (Committee member) / Bertoni, Mariana (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2018
157247-Thumbnail Image.png
Description
Photovoltaics (PV) is one of the promising options for maintaining sustainable energy supply because it is environmentally friendly, a non-polluting and low-maintenance energy source. Despite the many advantages of PV, solar energy currently accounts for only 1% of the global energy portfolio for electricity generation. This is because the cost

Photovoltaics (PV) is one of the promising options for maintaining sustainable energy supply because it is environmentally friendly, a non-polluting and low-maintenance energy source. Despite the many advantages of PV, solar energy currently accounts for only 1% of the global energy portfolio for electricity generation. This is because the cost of electricity from PV remains about a factor of two higher than the fossil fuel (10¢/kWh). Widely-used commercial methods employed to generate PV energy, such as silicon or thin film-based technologies, are still expensive as they are processed through vacuum-based techniques. Therefore, it is desirable to find an alternative method that is open-air and continuous process for the mass production of solar cells.

The objective of the research in this thesis is to develop low-cost spray pyrolysis technique to synthesize oxides thin films for applications in solar cells. Chapter 4 and 5 discuss spray-deposited dielectric oxides for their applications in Si solar cells. In Chapter 4, a successful deposition of Al2O3 is demonstrated using water as the solvent which ensures a lower cost and safer process environment. Optical, electrical, and structural properties of spray-deposited Al2O3 are investigated and compared to the industrial standard Atomic Layer Deposition (ALD) Al2O3/Plasma Enhanced Chemical Vapor Deposition (PECVD) SiNx stack, to reveal the suitability of spray-deposited Al2O3 for rear passivation and optical trapping in p-type Si Passivated Emitter and Rear Cell (PERC) solar cells. In Chapter 5, The possibility of using low-cost spray-deposited ZrO2 as the antireflection coating for Si solar cells is investigated. Optical, electrical and structural properties of spray-deposited ZrO2 films are studied and compared to the industrial standard antireflection coating PECVD SiNx. In Chapter 6, spray-deposited hematite Fe2O3 and sol-gel prepared anatase TiO2 thin films are sulfurized by annealing in H2S to investigate the band gap narrowing by sulfur doping and explore the possibility of using ternary semiconductors for their application as solar absorbers.
ContributorsShin, Woo Jung (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Wang, Qing Hua (Committee member) / Arizona State University (Publisher)
Created2019
155086-Thumbnail Image.png
Description
CdTe/MgxCd1-xTe double heterostructures (DHs) have been grown on lattice matched InSb (001) substrates using Molecular Beam Epitaxy. The MgxCd1-xTe layers, which have a wider bandgap and type-I band edge alignment with CdTe, provide sufficient carrier confinement to CdTe, so that the optical properties of CdTe can be studied. The DH

CdTe/MgxCd1-xTe double heterostructures (DHs) have been grown on lattice matched InSb (001) substrates using Molecular Beam Epitaxy. The MgxCd1-xTe layers, which have a wider bandgap and type-I band edge alignment with CdTe, provide sufficient carrier confinement to CdTe, so that the optical properties of CdTe can be studied. The DH samples show very strong Photoluminescence (PL) intensity, long carrier lifetimes (up to 3.6 μs) and low effective interface recombination velocity at the CdTe/MgxCd1 xTe heterointerface (~1 cm/s), indicating the high material quality. Indium has been attempted as an n-type dopant in CdTe and it is found that the carriers are 100% ionized in the doping range of 1×1016 cm-3 to 1×1018 cm-3. With decent doping levels, long minority carrier lifetime, and almost perfect surface passivation by the MgxCd1-xTe layer, the CdTe/MgxCd1-xTe DHs are applied to high efficiency CdTe solar cells. Monocrystalline CdTe solar cells with efficiency of 17.0% and a record breaking open circuit voltage of 1.096 V have been demonstrated in our group.

Mg0.13Cd0.87Te (1.7 eV), also with high material quality, has been proposed as a current matching cell to Si (1.1 eV) solar cells, which could potentially enable a tandem solar cell with high efficiency and thus lower the electricity cost. The properties of Mg0.13Cd0.87Te/Mg0.5Cd0.5Te DHs and solar cells have been investigated. Carrier lifetime as long as 0.56 μs is observed and a solar cell with 11.2% efficiency and open circuit voltage of 1.176 V is demonstrated.

The CdTe/MgxCd1-xTe DHs could also be potentially applied to luminescence refrigeration, which could be used in vibration-free space applications. Both external luminescence quantum efficiency and excitation-dependent PL measurement show that the best quality samples are almost 100% dominated by radiative recombination, and calculation shows that the internal quantum efficiency can be as high as 99.7% at the optimal injection level (1017 cm-3). External luminescence quantum efficiency of over 98% can be realized for luminescence refrigeration with the proper design of optical structures.
ContributorsZhao, Xinhao (Author) / Zhang, Yong-Hang (Thesis advisor) / Johnson, Shane (Committee member) / Holman, Zachary (Committee member) / Chowdhury, Srabanti (Committee member) / He, Ximin (Committee member) / Arizona State University (Publisher)
Created2016
154961-Thumbnail Image.png
Description
Nickel-Copper metallization for silicon solar cells offers a cost effective alternative to

traditional screen printed silver paste technology. The main objective of this work is to

study the formation of nickel silicide contacts with and without native silicon dioxide SiO2.

The effect of native SiO2 on the silicide formation has been studied using

Nickel-Copper metallization for silicon solar cells offers a cost effective alternative to

traditional screen printed silver paste technology. The main objective of this work is to

study the formation of nickel silicide contacts with and without native silicon dioxide SiO2.

The effect of native SiO2 on the silicide formation has been studied using Raman

spectroscopy, Rutherford backscattering spectrometry and sheet resistance

measurements which shows that SiO

2

acts as a diffusion barrier for silicidation at low

temperatures of 350°C. At 400°C the presence of SiO2 results in the increased formation

of nickel mono-silicide phase with reduced thickness when compared to samples without

any native oxide. Pre and post-anneal measurements of Suns Voc, photoluminescence and

Illuminated lock in thermography show effect of annealing on electrical characteristics of

the device. The presence of native oxide is found to prevent degradation of the solar cells

when compared to cells without any native oxide. A process flow for fabricating silicon

solar cells using light induced plating of nickel and copper with and without native oxide

(SiO2) has been developed and cell results for devices fabricated on 156mm wafers have

been discussed.
ContributorsJain, Harsh Narendrakumar (Author) / Bowden, Stuart (Thesis advisor) / Alford, Terry (Thesis advisor) / Holman, Zachary (Committee member) / Arizona State University (Publisher)
Created2016
155190-Thumbnail Image.png
Description
Cadmium Telluride (CdTe) possesses preferable optical properties for photovoltaic (PV) applications: a near optimum bandgap of 1.5 eV, and a high absorption coefficient of over 15,000 cm-1 at the band edge. The detailed-balance limiting efficiency is 32.1% with an open-circuit voltage (Voc) of 1.23 V under the AM1.5G spectrum. The

Cadmium Telluride (CdTe) possesses preferable optical properties for photovoltaic (PV) applications: a near optimum bandgap of 1.5 eV, and a high absorption coefficient of over 15,000 cm-1 at the band edge. The detailed-balance limiting efficiency is 32.1% with an open-circuit voltage (Voc) of 1.23 V under the AM1.5G spectrum. The record polycrystalline CdTe thin-film cell efficiency has reached 22.1%, with excellent short-circuit current densities (Jsc) and fill-factors (FF). However, the Voc (~900 mV) is still far below the theoretical value, due to the large non-radiative recombination in the polycrystalline CdTe absorber, and the low-level p-type doping.

Monocrystalline CdTe/MgCdTe double-heterostructures (DHs) grown on lattice-matched InSb substrates have demonstrated impressively long carrier lifetimes in both unintentionally doped and Indium-doped n-type CdTe samples. The non-radiative recombination inside of, and at the interfaces of the CdTe absorbers in CdTe/MgCdTe DH samples has been significantly reduced due to the use of lattice-matched InSb substrates, and the excellent passivation provided by the MgCdTe barrier layers. The external luminescent quantum efficiency (η_ext) of n-type CdTe/MgCdTe DHs is up to 3.1%, observed from a 1-µm-thick CdTe/MgCdTe DH doped at 1017 cm-3. The 3.1% η_ext corresponds to an internal luminescent quantum efficiency (η_int) of 91%. Such a high η_ext gives an implied Voc, or quasi-Fermi-level splitting, of 1.13 V.

To obtain actual Voc, the quasi-Fermi-level splitting should be extracted to outside the circuit using a hole-selective contact layer. However, CdTe is difficult to be doped p-type, making it challenging to make efficient PN junction CdTe solar cells. With the use of MgCdTe barrier layers, the hole-contact layer can be defective without affecting the voltage. P-type hydrogenated amorphous silicon is an effective hole-selective contact for CdTe solar cells, enabling monocrystalline CdTe/MgCdTe DH solar cells to achieve Voc over 1.1 V, and a maximum active area efficiency of 18.8% (Jsc = 23.3 mA/cm2, Voc = 1.114 V, and FF = 72.3%). The knowledge gained through making the record-efficiency monocrystalline CdTe cell, particularly the n-type doping and the double-heterostructure design, may be transferable to polycrystalline CdTe thin-film cells and improve their competitiveness in the PV industry.
ContributorsZhao, Yuan (Author) / Zhang, Yong-Hang (Thesis advisor) / Bertoni, Mariana (Committee member) / King, Richard (Committee member) / Holman, Zachary (Committee member) / Arizona State University (Publisher)
Created2016