Matching Items (2)
Filtering by

Clear all filters

154294-Thumbnail Image.png
Description
In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown

In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation methods. The techniques for device modeling are described applied to a recent GaN-HEMT, and they are validated with experimental measurements. The main techniques characterization techniques are also described, including the original contribution provided by this work. Chapter 3 focuses on a popular technique to enhance HEMTs performance: the down-scaling of the device dimensions. In particular, this chapter is dedicated to lateral scaling and the calculation of a limiting cutoff frequency for a device of vanishing length. Finally, Chapter 4 and Chapter 5 describe the modeling of Hot Electron Transistors (HETs). The simulation approach is validated by matching the current characteristics with the experimental one before variations of the layouts are proposed to increase the current gain to values suitable for amplification. The frequency response of these layouts is calculated, and modeled by a small signal circuit. For this purpose, a method to directly calculate the capacitance is developed which provides a graphical picture of the capacitative phenomena that limit the frequency response in devices. In Chapter 5 the properties of the hot electrons are investigated for different injection energies, which are obtained by changing the layout of the emitter barrier. Moreover, the large signal characterization of the HET is shown for different layouts, where the collector barrier was scaled.
ContributorsSoligo, Riccardo (Author) / Saraniti, Marco (Thesis advisor) / Goodnick, Stephen M (Committee member) / Chowdhury, Srabanti (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2016
155086-Thumbnail Image.png
Description
CdTe/MgxCd1-xTe double heterostructures (DHs) have been grown on lattice matched InSb (001) substrates using Molecular Beam Epitaxy. The MgxCd1-xTe layers, which have a wider bandgap and type-I band edge alignment with CdTe, provide sufficient carrier confinement to CdTe, so that the optical properties of CdTe can be studied. The DH

CdTe/MgxCd1-xTe double heterostructures (DHs) have been grown on lattice matched InSb (001) substrates using Molecular Beam Epitaxy. The MgxCd1-xTe layers, which have a wider bandgap and type-I band edge alignment with CdTe, provide sufficient carrier confinement to CdTe, so that the optical properties of CdTe can be studied. The DH samples show very strong Photoluminescence (PL) intensity, long carrier lifetimes (up to 3.6 μs) and low effective interface recombination velocity at the CdTe/MgxCd1 xTe heterointerface (~1 cm/s), indicating the high material quality. Indium has been attempted as an n-type dopant in CdTe and it is found that the carriers are 100% ionized in the doping range of 1×1016 cm-3 to 1×1018 cm-3. With decent doping levels, long minority carrier lifetime, and almost perfect surface passivation by the MgxCd1-xTe layer, the CdTe/MgxCd1-xTe DHs are applied to high efficiency CdTe solar cells. Monocrystalline CdTe solar cells with efficiency of 17.0% and a record breaking open circuit voltage of 1.096 V have been demonstrated in our group.

Mg0.13Cd0.87Te (1.7 eV), also with high material quality, has been proposed as a current matching cell to Si (1.1 eV) solar cells, which could potentially enable a tandem solar cell with high efficiency and thus lower the electricity cost. The properties of Mg0.13Cd0.87Te/Mg0.5Cd0.5Te DHs and solar cells have been investigated. Carrier lifetime as long as 0.56 μs is observed and a solar cell with 11.2% efficiency and open circuit voltage of 1.176 V is demonstrated.

The CdTe/MgxCd1-xTe DHs could also be potentially applied to luminescence refrigeration, which could be used in vibration-free space applications. Both external luminescence quantum efficiency and excitation-dependent PL measurement show that the best quality samples are almost 100% dominated by radiative recombination, and calculation shows that the internal quantum efficiency can be as high as 99.7% at the optimal injection level (1017 cm-3). External luminescence quantum efficiency of over 98% can be realized for luminescence refrigeration with the proper design of optical structures.
ContributorsZhao, Xinhao (Author) / Zhang, Yong-Hang (Thesis advisor) / Johnson, Shane (Committee member) / Holman, Zachary (Committee member) / Chowdhury, Srabanti (Committee member) / He, Ximin (Committee member) / Arizona State University (Publisher)
Created2016