Matching Items (4)
Filtering by

Clear all filters

153176-Thumbnail Image.png
Description
Mitochondria are crucial intracellular organelles which play a pivotal role in providing energy to living organisms in the form of adenosine triphosphate (ATP). The mitochondrial electron transport chain (ETC) coupled with oxidative phosphorylation (OX-PHOS) transforms the chemical energy of amino acids, fatty acids and sugars to ATP. The mitochondrial electron

Mitochondria are crucial intracellular organelles which play a pivotal role in providing energy to living organisms in the form of adenosine triphosphate (ATP). The mitochondrial electron transport chain (ETC) coupled with oxidative phosphorylation (OX-PHOS) transforms the chemical energy of amino acids, fatty acids and sugars to ATP. The mitochondrial electron transport system consumes nearly 90% of the oxygen used by the cell. Reactive oxygen species (ROS) in the form of superoxide anions (O2*-) are generated as byproduct of cellular metabolism due to leakage of electrons from complex I and complex III to oxygen. Under normal conditions, the effects of ROS are offset by a variety of antioxidants (enzymatic and non-enzymatic).

Mitochondrial dysfunction has been proposed in the etiology of various pathologies, including cardiovascular and neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, ischemia-reperfusion (IR) injury, diabetes and aging. To treat these disorders, it is imperative to target mitochondria, especially the electron transport chain. One of the methodologies currently used for the treatment of mitochondrial and neurodegenerative diseases where endogenous antioxidant defenses are inadequate for protecting against ROS involves the administration of exogenous antioxidants.

As part of our pursuit of effective neuroprotective drugs, a series of pyridinol and pyrimidinol analogues have been rationally designed and synthesized. All the analogues were evaluated for their ability to quench lipid peroxidation and reactive oxygen species (ROS), and preserve mitochondrial membrane potential (Δm) and support ATP synthesis. These studies are summarized in Chapter 2.

Drug discovery and lead identification can be reinforced by assessing the metabolic fate of orally administered drugs using simple microsomal incubation experiments. Accordingly, in vitro microsomal studies were designed and carried out using bovine liver microsomes to screen available pyridinol and pyrimidinol analogues for their metabolic lability. The data obtained was utilized for an initial assessment of potential bioavailability of the compounds screened and is summarized fully in Chapter 3.
ContributorsAlam, Mohammad Parvez (Author) / Hecht, Sidney M. (Thesis advisor) / Gould, Ian R (Committee member) / Moore, Ana (Committee member) / Arizona State University (Publisher)
Created2014
150084-Thumbnail Image.png
Description
Cellular redox phenomena are essential for the life of organisms. Described here is a summary of the synthesis of a number of redox-cycling therapeutic agents. The work centers on the synthesis of antitumor antibiotic bleomycin congeners. In addition, the synthesis of pyridinol analogues of alpha-tocopherol is also described.

Cellular redox phenomena are essential for the life of organisms. Described here is a summary of the synthesis of a number of redox-cycling therapeutic agents. The work centers on the synthesis of antitumor antibiotic bleomycin congeners. In addition, the synthesis of pyridinol analogues of alpha-tocopherol is also described. The bleomycins (BLMs) are a group of glycopeptide antibiotics that have been used clinically to treat several types of cancers. The antitumor activity of BLM is thought to be related to its degradation of DNA, and possibly RNA. Previous studies have indicated that the methylvalerate subunit of bleomycin plays an important role in facilitating DNA cleavage by bleomycin and deglycobleomycin. A series of methylvalerate analogues have been synthesized and incorporated into deglycobleomycin congeners by the use of solid-phase synthesis. All of the deglycobleomycin analogues were found to effect the relaxation of plasmid DNA. Those analogues having aromatic C4-substituents exhibited cleavage efficiency comparable to that of deglycoBLM A5. Some, but not all, of the deglycoBLM analogues were also capable of mediating sequence-selective DNA cleavage. The second project focused on the synthesis of bicyclic pyridinol analogues of alpha-tocopherol. Bicyclic pyridinol antioxidants have recently been reported to suppress the autoxidation of methyl linoleate more effectively than alpha-tocopherol. However, the complexity of the synthetic routes has hampered their further development as therapeutic agents. Described herein is a concise synthesis of two bicyclic pridinol antioxidants and a facile approach to their derivatives with simple alkyl chains attached to the antioxidant core. These analogues were shown to retain biological activity and exhibit tocopherol-like behaviour.
ContributorsCai, Xiaoqing (Author) / Hecht, Sidney M. (Thesis advisor) / Gould, Ian R (Committee member) / Hartnett, Hilairy E (Committee member) / Arizona State University (Publisher)
Created2011
153859-Thumbnail Image.png
Description
Mitochondria produce the majority portion of ATP required in eukaryotic cells. ATP is generated through a process known as oxidative phosphorylation, through an pathway consisting five multi subunit proteins (complex I-IV and ATP synthase), embedded inside the mitochondrial membrane. Mitochondrial electron transport chain dysfunction increases reactive oxygen species in the

Mitochondria produce the majority portion of ATP required in eukaryotic cells. ATP is generated through a process known as oxidative phosphorylation, through an pathway consisting five multi subunit proteins (complex I-IV and ATP synthase), embedded inside the mitochondrial membrane. Mitochondrial electron transport chain dysfunction increases reactive oxygen species in the cell and causes several serious disorders. Described herein are the synthesis of antioxidant molecules to reduce the effects in an already dysfunctional system. Also described is the study of the mitochondrial electron transport chain to understand the mechanism of action of a library of antioxidants. Illustrated in chapter 1 is the general history of research on mitochondrial dysfunction and reported ways to ameliorate them. Chapter 2 describes the design and synthesis of a series of compounds closely resembling the redox-active quinone core of the natural product geldanamycin. Geldanamycin has been reported to confer cytoprotection to FRDA lymphocytes in a dose dependent manner under conditions of induced oxidative stress. A library of rationally designed derivatives has been synthesized as a part of our pursuit of a better neuroprotective drug. Chapter 3 describes the design and synthesis of a library of pyrimidinol analogues. Compounds of this type have demonstrated the ability to quench reactive oxygen species and sustain mitochondrial membrane potential. Described herein are our efforts to increase their metabolic stability and total ATP production. It is crucial to understand the nature of interaction between a potential drug molecule and the mitochondrial electron transport chain to enable the design and synthesis a better therapeutic candidates. Chapter 4 describes a part of the enzymatic

binding studies between a molecular library synthesized in our laboratory and the mitochondrial electron transport chain using sub mitochondrial particles (SMP).
ContributorsDey, Sriloy (Author) / Hecht, Sidney M. (Thesis advisor) / Angell, Charles A (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2015
151493-Thumbnail Image.png
Description
Healthy mitochondria are essential for cell survival. Described herein is the synthesis of a family of novel aminoquinone antioxidants designed to alleviate oxidative stress and prevent the impairment of cellular function. In addition, a library of bleomycin disaccharide analogues has also been synthesized to better probe the tumor targeting properties

Healthy mitochondria are essential for cell survival. Described herein is the synthesis of a family of novel aminoquinone antioxidants designed to alleviate oxidative stress and prevent the impairment of cellular function. In addition, a library of bleomycin disaccharide analogues has also been synthesized to better probe the tumor targeting properties of bleomycin. The first study involves the synthesis of a benzoquinone natural product and analogues that closely resemble the redox core of the natural product geldanamycin. The synthesized 5-amino-3-tridecyl-1,4-benzoquinone antioxidants were tested for their ability to protect Friedreich's ataxia (FRDA) lymphocytes from induced oxidative stress. Some of the analogues synthesized conferred cytoprotection in a dose-dependent manner in FRDA lymphocytes at micromolar concentrations. The biological assays suggest that the modification of the 2-hydroxyl and N-(3-carboxypropyl) groups in the natural product can improve its antioxidant activity and significantly enhance its ability to protect mitochondrial function under conditions of oxidative stress. The second project focused on the synthesis of a library of bleomycin disaccharide-dye conjugates and monitored their cellular uptake by fluorescence microscopy. The studies reveal that the position of the carbamoyl group plays an important role in modulating the cellular uptake of the disaccharide. It also led to the discovery of novel disaccharides with improved tumor selectivity.
ContributorsMathilakathu Madathil, Manikandadas (Author) / Hecht, Sidney M. (Thesis advisor) / Rose, Seth (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2013