Matching Items (7)
Filtering by

Clear all filters

152815-Thumbnail Image.png
Description
Research on priming has shown that exposure to the concept of fast food can have an effect on human behavior by inducing haste and impatience (Zhong & E. DeVoe, 2010). This research suggests that thinking about fast food makes individuals impatient and strengthens their desire to complete tasks such as

Research on priming has shown that exposure to the concept of fast food can have an effect on human behavior by inducing haste and impatience (Zhong & E. DeVoe, 2010). This research suggests that thinking about fast food makes individuals impatient and strengthens their desire to complete tasks such as reading and decision making as quickly and efficiently as possible. Two experiments were conducted in which the effects of fast food priming were examined using a driving simulator. The experiments examined whether fast food primes can induce impatient driving. In experiment 1, 30 adult drivers drove a course in a driving simulator after being exposed to images by rating aesthetics of four different logos. Experiment 1 did not yield faster driving speeds nor an impatient and faster break at the yellow light in the fast food logo prime condition. In experiment 2, 30 adult drivers drove the same course from experiment 1. Participants did not rate logos on their aesthetics prior to the drive, instead billboards were included in the simulation that had either fast food or diner logos. Experiment 2 did not yielded faster driving speeds, however there was a significant effect of faster breaking and a higher number of participants running the yellow light.
ContributorsTaggart, Mistey. L (Author) / Branaghan, Russell (Thesis advisor) / Cooke, Nancy J. (Committee member) / Song, Hyunjin (Committee member) / Arizona State University (Publisher)
Created2014
153492-Thumbnail Image.png
Description
Although current urban search and rescue (USAR) robots are little more than remotely controlled cameras, the end goal is for them to work alongside humans as trusted teammates. Natural language communications and performance data are collected as a team of humans works to carry out a simulated search and rescue

Although current urban search and rescue (USAR) robots are little more than remotely controlled cameras, the end goal is for them to work alongside humans as trusted teammates. Natural language communications and performance data are collected as a team of humans works to carry out a simulated search and rescue task in an uncertain virtual environment. Conditions are tested emulating a remotely controlled robot versus an intelligent one. Differences in performance, situation awareness, trust, workload, and communications are measured. The Intelligent robot condition resulted in higher levels of performance and operator situation awareness (SA).
ContributorsBartlett, Cade Earl (Author) / Cooke, Nancy J. (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Wu, Bing (Committee member) / Arizona State University (Publisher)
Created2015
155966-Thumbnail Image.png
Description
The American Heart Association (AHA) estimates that there are approximately 200,000 in-hospital cardiac arrests (IHCA) annually with low rates of survival to discharge at about 22%. Training programs for cardiac arrest teams, also termed code teams, have been recommended by the Institute of Medicine (IOM) and in the AHA's consensus

The American Heart Association (AHA) estimates that there are approximately 200,000 in-hospital cardiac arrests (IHCA) annually with low rates of survival to discharge at about 22%. Training programs for cardiac arrest teams, also termed code teams, have been recommended by the Institute of Medicine (IOM) and in the AHA's consensus statement to help improve these dismal survival rates. Historically, training programs in the medical field are procedural in nature and done at the individual level, despite the fact that healthcare providers frequently work in teams. The rigidity of procedural training can cause habituation and lead to poor team performance if the situation does not match the original training circumstances. Despite the need for team training, factors such as logistics, time, personnel coordination, and financial constraints often hinder resuscitation team training. This research was a three-step process of: 1) development of a metric specific for the evaluation of code team performance, 2) development of a communication model that targeted communication and leadership during a code blue resuscitation, and 3) training and evaluation of the code team leader using the communication model. This research forms a basis to accomplish a broad vision of improving outcomes of IHCA events by applying conceptual and methodological strategies learned from collaborative and inter-disciplinary science of teams.
ContributorsHinski, Sandra T. (Author) / Cooke, Nancy J. (Thesis advisor) / Roscoe, Rod (Committee member) / Bekki, Jennifer (Committee member) / Arizona State University (Publisher)
Created2017
154998-Thumbnail Image.png
Description
Intelligence analysts’ work has become progressively complex due to increasing security threats and data availability. In order to study “big” data exploration within the intelligence domain the intelligence analyst task was abstracted and replicated in a laboratory (controlled environment). Participants used a computer interface and movie database to

Intelligence analysts’ work has become progressively complex due to increasing security threats and data availability. In order to study “big” data exploration within the intelligence domain the intelligence analyst task was abstracted and replicated in a laboratory (controlled environment). Participants used a computer interface and movie database to determine the opening weekend gross movie earnings of three pre-selected movies. Data consisted of Twitter tweets and predictive models. These data were displayed in various formats such as graphs, charts, and text. Participants used these data to make their predictions. It was expected that teams (a team is a group with members who have different specialties and who work interdependently) would outperform individuals and groups. That is, teams would be significantly better at predicting “Opening Weekend Gross” than individuals or groups. Results indicated that teams outperformed individuals and groups in the first prediction, under performed in the second prediction, and performed better than individuals in the third prediction (but not better than groups). Insights and future directions are discussed.
ContributorsBuchanan, Verica (Author) / Cooke, Nancy J. (Thesis advisor) / Maciejewski, Ross (Committee member) / Craig, Scotty D. (Committee member) / Arizona State University (Publisher)
Created2016
155270-Thumbnail Image.png
Description
Driving a vehicle is a complex task that typically requires several physical interactions and mental tasks. Inattentive driving takes a driver’s attention away from the primary task of driving, which can endanger the safety of driver, passenger(s), as well as pedestrians. According to several traffic safety administration organizations, distracted and

Driving a vehicle is a complex task that typically requires several physical interactions and mental tasks. Inattentive driving takes a driver’s attention away from the primary task of driving, which can endanger the safety of driver, passenger(s), as well as pedestrians. According to several traffic safety administration organizations, distracted and inattentive driving are the primary causes of vehicle crashes or near crashes. In this research, a novel approach to detect and mitigate various levels of driving distractions is proposed. This novel approach consists of two main phases: i.) Proposing a system to detect various levels of driver distractions (low, medium, and high) using a machine learning techniques. ii.) Mitigating the effects of driver distractions through the integration of the distracted driving detection algorithm and the existing vehicle safety systems. In phase- 1, vehicle data were collected from an advanced driving simulator and a visual based sensor (webcam) for face monitoring. In addition, data were processed using a machine learning algorithm and a head pose analysis package in MATLAB. Then the model was trained and validated to detect different human operator distraction levels. In phase 2, the detected level of distraction, time to collision (TTC), lane position (LP), and steering entropy (SE) were used as an input to feed the vehicle safety controller that provides an appropriate action to maintain and/or mitigate vehicle safety status. The integrated detection algorithm and vehicle safety controller were then prototyped using MATLAB/SIMULINK for validation. A complete vehicle power train model including the driver’s interaction was replicated, and the outcome from the detection algorithm was fed into the vehicle safety controller. The results show that the vehicle safety system controller reacted and mitigated the vehicle safety status-in closed loop real-time fashion. The simulation results show that the proposed approach is efficient, accurate, and adaptable to dynamic changes resulting from the driver, as well as the vehicle system. This novel approach was applied in order to mitigate the impact of visual and cognitive distractions on the driver performance.
ContributorsAlomari, Jamil (Author) / Mayyas, AbdRaouf (Thesis advisor) / Cooke, Nancy J. (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017
155505-Thumbnail Image.png
Description
While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various

While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various warnings presented to drivers while they were operating a smart phone. Experiment One attempted to understand which smart phone tasks, (text vs image) or (self-paced vs other-paced) are the most distracting to a driver. Experiment Two compared the effectiveness of different smartphone based applications (app’s) for mitigating driver distraction. Experiment Three investigated the effects of informative auditory and tactile warnings which were designed to convey directional information to a distracted driver (moving towards or away). Lastly, Experiment Four extended the research into the area of autonomous driving by investigating the effectiveness of different auditory take-over request signals. Novel to both Experiment Three and Four was that the warnings were delivered from the source of the distraction (i.e., by either the sound triggered at the smart phone location or through a vibration given on the wrist of the hand holding the smart phone). This warning placement was an attempt to break the driver’s attentional focus on their smart phone and understand how to best re-orient the driver in order to improve the driver’s situational awareness (SA). The overall goal was to explore these novel methods of improved SA so drivers may more quickly and appropriately respond to a critical event.
ContributorsMcNabb, Jaimie Christine (Author) / Gray, Dr. Rob (Thesis advisor) / Branaghan, Dr. Russell (Committee member) / Becker, Dr. Vaughn (Committee member) / Arizona State University (Publisher)
Created2017
158598-Thumbnail Image.png
Description
Despite the prevalence of teams in complex sociotechnical systems, current approaches to understanding workload tend to focus on the individual operator. However, research suggests that team workload has emergent properties and is not necessarily equivalent to the aggregate of individual workload. Assessment of communications provides a means of examining aspects

Despite the prevalence of teams in complex sociotechnical systems, current approaches to understanding workload tend to focus on the individual operator. However, research suggests that team workload has emergent properties and is not necessarily equivalent to the aggregate of individual workload. Assessment of communications provides a means of examining aspects of team workload in highly interdependent teams. This thesis set out to explore how communications are associated with team workload and performance under high task demand in all-human and human–autonomy teams in a command and control task. A social network analysis approach was used to analyze the communications of 30 different teams, each with three members operating in a command and control task environment of over a series of five missions. Teams were assigned to conditions differentiated by their composition with either a naïve participant, a trained confederate, or a synthetic agent in the pilot role. Social network analysis measures of centralization and intensity were used to assess differences in communications between team types and under different levels of demand, and relationships between communication measures, performance, and workload distributions were also examined. Results indicated that indegree centralization was greater in the all-human control teams than in the other team types, but degree centrality standard deviation and intensity were greatest in teams with a highly trained experimenter pilot. In all three team types, the intensity of communications and degree centrality standard deviation appeared to decrease during the high demand mission, but indegree and outdegree centralization did not. Higher communication intensity was associated with more efficient target processing and more successful target photos per mission, but a clear relationship between measures of performance and decentralization of communications was not found.
ContributorsJohnson, Craig Jonathon (Author) / Cooke, Nancy J. (Thesis advisor) / Gray, Robert (Committee member) / Gutzwiller, Robert S (Committee member) / Arizona State University (Publisher)
Created2020