Matching Items (3)
Filtering by

Clear all filters

133352-Thumbnail Image.png
Description
The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and

The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and Drug Administration (FDA) published several guidance documents encouraging researchers to exclude women from early clinical drug research. The motivation to publish those documents and the subsequent guidance documents in which the FDA and other regulatory offices established their standpoints on women in drug research may have been connected to current events at the time. The problem of whether women should be involved in drug research is a question of who can assume risk and who is responsible for disseminating what specific kinds of information. The problem tends to be framed as one that juxtaposes the health of women and fetuses and sets their health as in opposition. That opposition, coupled with the inherent uncertainty in testing drugs, provides for a complex set of issues surrounding consent and access to information.
ContributorsMeek, Caroline Jane (Author) / Maienschein, Jane (Thesis director) / Brian, Jennifer (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133754-Thumbnail Image.png
Description
This thesis elucidates the responsibility of the pharmaceutical industry for the current opioid epidemic, an epidemic which caused over 40,000 American deaths in 2016 alone. Twenty years prior, Purdue Pharma unleashed an extended-release formulation of the opioid oxycodone: OxyContin. With this, Purdue began a highly aggressive advertising campaign with the

This thesis elucidates the responsibility of the pharmaceutical industry for the current opioid epidemic, an epidemic which caused over 40,000 American deaths in 2016 alone. Twenty years prior, Purdue Pharma unleashed an extended-release formulation of the opioid oxycodone: OxyContin. With this, Purdue began a highly aggressive advertising campaign with the primary intention of guaranteeing the success of this drug; however, in doing so, they often neglected to ensure that the information they were propagating was wholly accurate. Previous reform attempts aimed at mollifying this crisis have ultimately fallen short, as they have failed to recognize the true extent of Purdue Pharma's involvement, especially with regard to the underlying issues that led to the initiation and progression of the epidemic. Future improvements should be targeted at the reform of regulatory agencies and insurance companies, as well as the cultural attitudes regarding pain and pain treatment that have been cultivated over the last several years. Ultimately, however, these reforms will likely prove to be insufficient unless the failings of the current healthcare system, including the pharmaceutical industry, are also taken into account.
ContributorsOzeran, Rachel Hoku Lii (Author) / Fong, Benjamin (Thesis director) / Brian, Jennifer (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
149595-Thumbnail Image.png
Description
The objective of this research was to predict the persistence of potential future contaminants in indirect potable reuse systems. In order to accurately estimate the fates of future contaminants in indirect potable reuse systems, results describing persistence from EPI Suite were modified to include sorption and oxidation. The target future

The objective of this research was to predict the persistence of potential future contaminants in indirect potable reuse systems. In order to accurately estimate the fates of future contaminants in indirect potable reuse systems, results describing persistence from EPI Suite were modified to include sorption and oxidation. The target future contaminants studied were the approximately 2000 pharmaceuticals currently undergoing testing by United States Food and Drug Administration (US FDA). Specific organic substances such as analgesics, antibiotics, and pesticides were used to verify the predicted half-lives by comparing with reported values in the literature. During sub-surface transport, an important component of indirect potable reuse systems, the effects of sorption and oxidation are important mechanisms. These mechanisms are not considered by the quantitative structure activity relationship (QSAR) model predictions for half-lives from EPI Suite. Modifying the predictions from EPI Suite to include the effects of sorption and oxidation greatly improved the accuracy of predictions in the sub-surface environment. During validation, the error was reduced by over 50% when the predictions were modified to include sorption and oxidation. Molecular weight (MW) is an important criteria for estimating the persistence of chemicals in the sub-surface environment. EPI Suite predicts that high MW compounds are persistent since the QSAR model assumes steric hindrances will prevent transformations. Therefore, results from EPI Suite can be very misleading for high MW compounds. Persistence was affected by the total number of halogen atoms in chemicals more than the sum of N-heterocyclic aromatics in chemicals. Most contaminants (over 90%) were non-persistent in the sub-surface environment suggesting that the target future drugs do not pose a significant risk to potable reuse systems. Another important finding is that the percentage of compounds produced from the biotechnology industry is increasing rapidly and should dominate the future production of pharmaceuticals. In turn, pharmaceuticals should become less persistent in the future. An evaluation of indirect potable reuse systems that use reverse osmosis (RO) for potential rejection of the target contaminants was performed by statistical analysis. Most target compounds (over 95%) can be removed by RO based on size rejection and other removal mechanisms.
ContributorsLim, Seung (Author) / Fox, Peter (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2011