Matching Items (3)
Filtering by

Clear all filters

137015-Thumbnail Image.png
Description
Substance abuse disorders affect 15.3 million people worldwide. The field has primarily focused on dopaminergic drugs as treatments for substance use disorders. However, recent work has demonstrated the potential of serotonergic compounds to treat substance abuse. Specifically, the serotonin 1B receptor (5-HT1BR), a Gi-coupled receptor located throughout the mesocorticolimbic dopamine

Substance abuse disorders affect 15.3 million people worldwide. The field has primarily focused on dopaminergic drugs as treatments for substance use disorders. However, recent work has demonstrated the potential of serotonergic compounds to treat substance abuse. Specifically, the serotonin 1B receptor (5-HT1BR), a Gi-coupled receptor located throughout the mesocorticolimbic dopamine system, has been implicated in the incentive motivational and rewarding effects of cocaine. Our research suggests that the stimulation of 5-HT1BRs produces different effects at various time points in the addiction cycle. During maintenance of chronic cocaine administration, 5-HT1BR stimulation has a facilitative effect on the reinforcing properties of cocaine. However 5-HT1BR stimulation exhibits inhibitory effects on reinforcement during prolonged abstinence from cocaine. The aim of this study was to examine the possibility of a switch in the functional role of 5-HT1BRs in the locomotor effects of cocaine at different time points of chronic cocaine administration in mice. We found that the 5-HT1BR agonist CP 94,253 increased locomotor activity in mice tested one day after the last chronic cocaine administration session regardless of whether the chronic treatment was cocaine or saline and regardless of challenge injection (i.e., cocaine or saline). Yet after abstinence, CP 94,253 induced a decrease in locomotor activity in mice challenged with saline and attenuated cocaine-induced locomotion relative to cocaine challenge after vehicle pretreatment. These findings suggest that a switch in the functional role of 5-HT1BR is observed at different stages of the addiction cycle and further suggest that clinical applications of drugs acting on 5-HT1BR should consider these effects.
ContributorsBrunwasser, Samuel Joshua (Author) / Neisewander, Janet (Thesis director) / Pentkowski, Nathan (Committee member) / Der-Ghazarian, Taleen (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2014-05
135926-Thumbnail Image.png
Description
The significance of hormonal vitamin D in the numerous facets of health stresses the importance of elucidating the molecular mechanism(s) associated with 1,25D-VDR signaling modulators (e.g., resveratrol and sirtuin-1). Resveratrol (Res), a natural antioxidant, is a potent activator of NAD-dependent deacetylase sirtuin-1 (SIRT-1), an enzyme associated with longevity in animal

The significance of hormonal vitamin D in the numerous facets of health stresses the importance of elucidating the molecular mechanism(s) associated with 1,25D-VDR signaling modulators (e.g., resveratrol and sirtuin-1). Resveratrol (Res), a natural antioxidant, is a potent activator of NAD-dependent deacetylase sirtuin-1 (SIRT-1), an enzyme associated with longevity in animal models. This present study employed mammalian 2-hybrid (M2H) and vitamin D responsive element (VDRE)-based transcriptional assays to investigate the potential effects of Res and SIRT-1 on VDR signal transduction. Results from VDRE-based assays indicate that Res and SIRT-1 potentiate 1,25D-VDR activity via cell-and-promoter-specific pathways. In addition, 1,25D displacement experiments revealed an increase in VDR-bound radiolabeled 1,25D in the presence of Res, suggesting that Res may potentiate VDR transactivation by stimulating 1,25D binding. M2H assays in HEK293 cells were then utilized to assess levels of interaction between VDR and VDR comodulators, including RXR, SRC-1, and DRIP-205. Both Res and SIRT-1 increased the ability of VDR to associate with RXR; however, SRC-1 and DRIP-205 interactions were not enhanced. The activity of a novel, non-acetylatable VDR mutant, K413R, was probed revealing that K413R possesses amplified transactivation capacity over wild-type VDR. A SIRT-1 inhibitor, EX-527, was used to suppress endogenous SIRT-1, resulting in significantly decreased VDR transactivation. Finally, qPCR results in HEK293 cells revealed that the 1,25D-mediated induction of CYP24A1, an endogenous VDR target gene, was enhanced (85%) by SIRT-1 while Res increased CYP24A1 expression by 294%. The combination of 1,25D, SIRT-1, and Res amplified CYP24A1 expression by 326% over 1,25D, although this effect did not reach statistical significance when compared to the Res only treated group. We conclude that acetylation of VDR comprises a negative feedback loop that attenuates 1,25D-VDR signaling. This loop is suppressed by resveratrol/SIRT-1-catalyzed deacetylation of VDR, restoring VDR activity. The two compounds, 1,25-dihydroxyvitamin D (1,25D, vitamin D) and 5-hydroxytryptamine (5-HT, serotonin), have been proposed to play a significant role in abnormal social behavior associated with psychological conditions including autism spectrum disorders (ASDs) and depression; however, the mechanism underlying these associations has yet to be elucidated. Deficiencies in 1,25D or 5-HT have been linked to the increased incidence of ASDs. Thus, examining the modulation of genes involved in 5-HT biosynthesis, reuptake, and degradation is fundamental in linking low 1,25D levels to the increased incidence of psychiatric disorders. We propose that 1,25D regulates tryptophan hydroxylase-2 (TPH2), the initial and rate-limiting enzyme in the biosynthetic pathway of 5-HT. In order to evaluate the regulation of TPH2 in neuronal cells, three formulations of media were examined to optimize the cell culture conditions necessary for growth and morphology of embryonic rat medullary raphe (B14) serotonergic neurons. Next, quantitative real time-PCR (qPCR) was utilized to examine TPH2 expression in cultured human glioblastoma (U-87) cells and rat serotonergic neurons (B-14). Human TPH2 mRNA in U-87 cells was induced dose-dependently resulting in a 2.4-fold increase at 10 nM 1,25D. Strikingly, TPH2 mRNA in B-14 cells was observed to be 26- to 86-fold upregulated at 10 nM 1,25D; however, 1 nM and 100 nM 1,25D elicited significantly smaller inductions (8-fold and 1.2-fold, respectively).
ContributorsSabir, Marya Sabah (Author) / Jurutka, Peter (Thesis director) / Hackney Price, Jennifer (Committee member) / Sandrin, Todd R. (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135273-Thumbnail Image.png
Description
Microorganisms can produce metabolites in the gut including short chain fatty acids, vitamins, and amino acids. Certain metabolites produced in the gut can affect the brain through changes in neurotransmitter concentrations. Serotonin, a neurotransmitter, is associated with mood, appetite, and sleep. Up to 90% of serotonin synthesis

Microorganisms can produce metabolites in the gut including short chain fatty acids, vitamins, and amino acids. Certain metabolites produced in the gut can affect the brain through changes in neurotransmitter concentrations. Serotonin, a neurotransmitter, is associated with mood, appetite, and sleep. Up to 90% of serotonin synthesis is located in the gut, by human enterochromaffin cells. Bacteria known to biosynthesize tryptophan, precursor to serotonin, include Escherichia coli, Enterococcus and Streptococcus. Tryptophan is synthesized by bacteria with the enzyme tryptophan synthase and requires Vitamin B6 (Pyridoxal). We hypothesize that gut isolates from surgical weight loss patients can enhance tryptophan production, which relies on vitamin B6 availability. Our goal was to isolate bacteria in order to test for tryptophan production and to determine how Vitamin B6 concentrations could affect tryptophan production. We isolated gut bacteria was from successful surgical weight loss patient with selective pressures for Enterobacter isolates and Enterococcus isolates. We tested the isolates were tested to determine if they could biosynthesize tryptophan in-vitro. Bacterial cultures were enriched with yeast and enriched with serine and indole, substrates necessary for tryptophan biosynthesis. We analyzed the supernatant samples for tryptophan production using GC-FID. Bacterial isolates most closely related to E. coli and Klebsiella based on 16S rRNA gene sequences, produced tryptophan in vitro. While under serine & indole media conditions, R1, the isolate most similar to Klebsiella produced more tryptophan than R14, the isolate most similar to E. coli. We tested the R1 isolate with a gradient of vitamin B6 concentrations from 0.02 µg/mL to 0.2 µg/mL to determine its effect on tryptophan production. When less than 0.05 µg/mL of Vitamin B6 was added, tryptophan production at 6 hours was higher than tryptophan production with Vitamin B6 concentrations at 0.05 µg/mL and above. The production and consumption of tryptophan by Klebsiella under 0 µg/mL and 0.02 µg/mL concentrations of Vitamin B6 occurred at a faster rate when compared to concentrations 0.05 µg/mL or higher of Vitamin B6.
ContributorsYee, Emily L. (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Ilhan, Zehra (Committee member) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05