Matching Items (2)
Filtering by

Clear all filters

151692-Thumbnail Image.png
Description
A new method for generating artificial fingerprints is presented. Due to their uniqueness and durability, fingerprints are invaluable tools for identification for law enforcement and other purposes. Large databases of varied, realistic artificial fingerprints are needed to aid in the development and evaluation of automated systems for criminal or biometric

A new method for generating artificial fingerprints is presented. Due to their uniqueness and durability, fingerprints are invaluable tools for identification for law enforcement and other purposes. Large databases of varied, realistic artificial fingerprints are needed to aid in the development and evaluation of automated systems for criminal or biometric identification. Further, an effective method for simulating fingerprints may provide insight into the biological processes underlying print formation. However, previous attempts at simulating prints have been unsatisfactory. We approach the problem of creating artificial prints through a pattern formation model. We demonstrate how it is possible to generate distinctive patterns that strongly resemble real fingerprints via a system of partial differential equations with a suitable domain and initial conditions.
ContributorsColtin, Kevin (Author) / Armbruster, Hans D (Thesis advisor) / Platte, Rodrigo B (Committee member) / Welfert, Bruno D (Committee member) / Arizona State University (Publisher)
Created2013
150669-Thumbnail Image.png
Description
Deoxyribonucleic Acid (DNA) evidence has been shown to have a strong effect on juror decision-making when presented in court. While DNA evidence has been shown to be extremely reliable, fingerprint evidence, and the way it is presented in court, has come under much scrutiny. Forensic fingerprint experts have been working

Deoxyribonucleic Acid (DNA) evidence has been shown to have a strong effect on juror decision-making when presented in court. While DNA evidence has been shown to be extremely reliable, fingerprint evidence, and the way it is presented in court, has come under much scrutiny. Forensic fingerprint experts have been working on a uniformed way to present fingerprint evidence in court. The most promising has been the Probabilistic Based Fingerprint Evidence (PBFE) created by Forensic Science Services (FSS) (G. Langenburg, personal communication, April 16, 2011). The current study examined how the presence and strength of DNA evidence influenced jurors' interpretation of probabilistic fingerprint evidence. Mock jurors read a summary of a murder case that included fingerprint evidence and testimony from a fingerprint expert and, in some conditions, DNA evidence and testimony from a DNA expert. Results showed that when DNA evidence was found at the crime scene and matched the defendant other evidence and the overall case was rated as stronger than when no DNA was present. Fingerprint evidence did not cause a stronger rating of other evidence and the overall case. Fingerprint evidence was underrated in some cases, and jurors generally weighed all the different strengths of fingerprint testimony to the same degree.
ContributorsArthurs, Shavonne (Author) / McQuiston, Dawn (Thesis advisor) / Hall, Deborah (Committee member) / Schweitzer, Nicholas (Committee member) / Arizona State University (Publisher)
Created2012