Matching Items (10)
Filtering by

Clear all filters

152315-Thumbnail Image.png
Description
ABSTRACT Whole genome sequencing (WGS) and whole exome sequencing (WES) are two comprehensive genomic tests which use next-generation sequencing technology to sequence most of the 3.2 billion base pairs in a human genome (WGS) or many of the estimated 22,000 protein-coding genes in the genome (WES). The promises offered from

ABSTRACT Whole genome sequencing (WGS) and whole exome sequencing (WES) are two comprehensive genomic tests which use next-generation sequencing technology to sequence most of the 3.2 billion base pairs in a human genome (WGS) or many of the estimated 22,000 protein-coding genes in the genome (WES). The promises offered from WGS/WES are: to identify suspected yet unidentified genetic diseases, to characterize the genomic mutations in a tumor to identify targeted therapeutic agents and, to predict future diseases with the hope of promoting disease prevention strategies and/or offering early treatment. Promises notwithstanding, sequencing a human genome presents several interrelated challenges: how to adequately analyze, interpret, store, reanalyze and apply an unprecedented amount of genomic data (with uncertain clinical utility) to patient care? In addition, genomic data has the potential to become integral for improving the medical care of an individual and their family, years after a genome is sequenced. Current informed consent protocols do not adequately address the unique challenges and complexities inherent to the process of WGS/WES. This dissertation constructs a novel informed consent process for individuals considering WGS/WES, capable of fulfilling both legal and ethical requirements of medical consent while addressing the intricacies of WGS/WES, ultimately resulting in a more effective consenting experience. To better understand components of an effective consenting experience, the first part of this dissertation traces the historical origin of the informed consent process to identify the motivations, rationales and institutional commitments that sustain our current consenting protocols for genetic testing. After understanding the underlying commitments that shape our current informed consent protocols, I discuss the effectiveness of the informed consent process from an ethical and legal standpoint. I illustrate how WGS/WES introduces new complexities to the informed consent process and assess whether informed consent protocols proposed for WGS/WES address these complexities. The last section of this dissertation describes a novel informed consent process for WGS/WES, constructed from the original ethical intent of informed consent, analysis of existing informed consent protocols, and my own observations as a genetic counselor for what constitutes an effective consenting experience.
ContributorsHunt, Katherine (Author) / Hurlbut, J. Benjamin (Thesis advisor) / Robert, Jason S. (Thesis advisor) / Maienschein, Jane (Committee member) / Northfelt, Donald W. (Committee member) / Marchant, Gary (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2013
152605-Thumbnail Image.png
Description
In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <“>Haeckel's Embryos: Fraud Rediscovered,<”> and Richardson's comments further reinvigorated criticism of Haeckel by others with articles in The American Biology Teacher, <“>Haeckel's Embryos and Evolution:

In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <“>Haeckel's Embryos: Fraud Rediscovered,<”> and Richardson's comments further reinvigorated criticism of Haeckel by others with articles in The American Biology Teacher, <“>Haeckel's Embryos and Evolution: Setting the Record Straight <”> and the New York Times, <“>Biology Text Illustrations more Fiction than Fact.<”> Meanwhile, others emphatically stated that the goal of comparative embryology was not to resurrect Haeckel's work. At the center of the controversy was Haeckel's no-longer-accepted idea of recapitulation. Haeckel believed that the development of an embryo revealed the adult stages of the organism's ancestors. Haeckel represented this idea with drawings of vertebrate embryos at similar developmental stages. This is Haeckel's embryo grid, the most common of all illustrations in biology textbooks. Yet, Haeckel's embryo grids are much more complex than any textbook explanation. I examined 240 high school biology textbooks, from 1907 to 2010, for embryo grids. I coded and categorized the grids according to accompanying discussion of (a) embryonic similarities (b) recapitulation, (c) common ancestors, and (d) evolution. The textbooks show changing narratives. Embryo grids gained prominence in the 1940s, and the trend continued until criticisms of Haeckel reemerged in the late 1990s, resulting in (a) grids with fewer organisms and developmental stages or (b) no grid at all. Discussion about embryos and evolution dropped significantly.
ContributorsWellner, Karen L (Author) / Maienschein, Jane (Thesis advisor) / Ellison, Karin D. (Committee member) / Creath, Richard (Committee member) / Robert, Jason S. (Committee member) / Laubichler, Manfred D. (Committee member) / Arizona State University (Publisher)
Created2014
155049-Thumbnail Image.png
Description
American Indian literature is replete with language that refers to broken or hollow promises the US government has made to American Indians, one of the most prominent being that the US government has not kept its promises regarding health services for American Indians/Alaska Natives (AI/AN). Some commenters refer to treaties

American Indian literature is replete with language that refers to broken or hollow promises the US government has made to American Indians, one of the most prominent being that the US government has not kept its promises regarding health services for American Indians/Alaska Natives (AI/AN). Some commenters refer to treaties between tribes and the US government as the origin of the promise for health services to AI/AN. Others point to the trust relationship between the sovereign nations of American Indian tribes and the US government, while still others assert that the Snyder Act of 1921 or the Indian Health Care Improvement Act (IHCIA) contained the promise for health care. While the US has provided some form of health care for AI/AN since the country was in its infancy, and continues to do so through the Indian Health Service, the promise of health services for AI/AN is not explicit.

Philosophers have articulated that a promise contains a moral obligation to fulfill it because of others’ expectations created by that promise. As the US government made its first promises in early treaties with AI/AN tribes and subsequently made promises in the years since, it is morally obligated to fulfill those promises, be they lying promises or not, because of resulting expectations. Yet, the US government has historically acted to restrict the rights of AI/AN—rights that include access to health services—through assimilation, separation, or termination policies. Further, the policies of the US government have kept the AI/AN populations socioeconomically impoverished, dependent on the US government for basic needs, and susceptible to health-compromising conditions.

Using case studies, this dissertation looks not only at the policies and events that directly affected health services and health status, but also at how those policies and events contributed to health outcomes and the expectations of AI/AN. Given the history of the US government in fulfilling (or not fulfilling) its promises, this dissertation examines the expectations of AI/AN for their own future health outcomes under the policy of self-governance.
ContributorsDrago, Mary (Author) / Maienschein, Jane (Thesis advisor) / Ellison, Karin (Committee member) / Herkert, Joseph (Committee member) / Hurlbut, James (Committee member) / Robert, Jason (Committee member) / Trujillo, Michael (Committee member) / Arizona State University (Publisher)
Created2016
149333-Thumbnail Image.png
Description
Biology textbooks are everybody's business. In accepting the view that texts are created with specific social goals in mind, I examined 127 twentieth-century high school biology textbooks for representations of animal development. Paragraphs and visual representations were coded and placed in one of four scientific literacy categories: descriptive, investigative, nature

Biology textbooks are everybody's business. In accepting the view that texts are created with specific social goals in mind, I examined 127 twentieth-century high school biology textbooks for representations of animal development. Paragraphs and visual representations were coded and placed in one of four scientific literacy categories: descriptive, investigative, nature of science, and human embryos, technology, and society (HETS). I then interpreted how embryos and fetuses have been socially constructed for students. I also examined the use of Haeckel's embryo drawings to support recapitulation and evolutionary theory. Textbooks revealed that publication of Haeckel's drawings was influenced by evolutionists and anti-evolutionists in the 1930s, 1960s, and the 1990s. Haeckel's embryos continue to persist in textbooks because they "safely" illustrate similarities between embryos and are rarely discussed in enough detail to understand comparative embryology's role in the support of evolution. Certain events coincided with changes in how embryos were presented: (a) the growth of the American Medical Association (AMA) and an increase in birth rates (1950s); (b) the Biological Sciences Curriculum Study (BSCS) and public acceptance of birth control methods (1960s); (c) Roe vs. Wade (1973); (d) in vitro fertilization and Lennart Nilsson's photographs (1970s); (e) prenatal technology and fetocentrism (1980s); and (f) genetic engineering and Science-Technology-Society (STS) curriculum (1980s and 1990s). By the end of the twentieth century, changing conceptions, research practices, and technologies all combined to transform the nature of biological development. Human embryos went from a highly descriptive, static, and private object to that of sometimes contentious public figure. I contend that an ignored source for helping move embryos into the public realm is schoolbooks. Throughout the 1900s, authors and publishers accomplished this by placing biology textbook embryos and fetuses in several different contexts--biological, technological, experimental, moral, social, and legal.
ContributorsWellner, Karen L (Author) / Maienschein, Jane (Thesis advisor) / Ellison, Karin D. (Committee member) / Robert, Jason S. (Committee member) / Arizona State University (Publisher)
Created2010
173928-Thumbnail Image.png
Description

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also made future research possible into the molecular basis of embryonic development, genetic disorders, and gene manipulation.

Created2013-11-17
172715-Thumbnail Image.png
Description

In his 1991 article Screening for Congenital Hypothyroidism, Delbert A. Fisher in the US reported on the implementation and impact of mass neonatal screening programs for congenital hypothyroidism (CH) from the early 1970s through 1991. CH is a condition that causes stunted mental and physical development in newborns unless treatment

In his 1991 article Screening for Congenital Hypothyroidism, Delbert A. Fisher in the US reported on the implementation and impact of mass neonatal screening programs for congenital hypothyroidism (CH) from the early 1970s through 1991. CH is a condition that causes stunted mental and physical development in newborns unless treatment begins within the first three months of the newborn's life. In the early 1970s, regions in Canada and the US had implemented screening programs to diagnose and treat CH as quickly as possible after the infant's birth. By 1991 many other countries had adopted the early screening program, and Fisher estimated that 10 to 12 million newborns per year were tested in the early 1990s. The screening programs, along with physician education and improved screening techniques, such as radioimmunoassay, helped significantly reduce the incidence of abnormal newborn development resulting from untreated congenital hypothyroidism.

Created2013-12-31
172807-Thumbnail Image.png
Description

The endothelium is the layer of cells lining the blood vessels in animals. It weighs more than one kilogram in adult humans, and it covers a surface area of 4000 to 7000 square meters. The endothelium is the cellular interface between the circulating blood and underlying tissue. As the medium

The endothelium is the layer of cells lining the blood vessels in animals. It weighs more than one kilogram in adult humans, and it covers a surface area of 4000 to 7000 square meters. The endothelium is the cellular interface between the circulating blood and underlying tissue. As the medium between these two sets of tissues, endothelium is part of many normal and disease processes throughout the body. The endothelium responds to signals from its surrounding environment to help regulate functions like the resistance that blood vessels need to pump blood through the body (vasomotor tone), the policing of substances trying to enter or exit the blood vessel (blood vessel permeability), and the ability of blood to clot (hemostasis). In addition to diseases like atherosclerosis, endothelium has been indicated as a component in pathologies like cancer, asthma, diabetes, hepatitis, multiple sclerosis, and sepsis. The shape, size, and appearance of endothelial cells, called their phenotypes, vary depending upon which part of the body the cells are from, a property called phenotypic heterogeneity. The endothelium, its properties, and its responses to stimuli are governed largely by the local environment of the cells.

Created2014-01-28
172850-Thumbnail Image.png
Description

Carl Richard Moore was a professor and researcher at the University of Chicago in Chicago, Illinois who studied sex hormones in animals from 1916 until his death in 1955. Moore focused on the role of hormones on sex differentiation in offspring, the optimal conditions for sperm production, and the effects

Carl Richard Moore was a professor and researcher at the University of Chicago in Chicago, Illinois who studied sex hormones in animals from 1916 until his death in 1955. Moore focused on the role of hormones on sex differentiation in offspring, the optimal conditions for sperm production, and the effects of vasectomy or testicular implants on male sex hormone production. Moore's experiments to create hermaphrodites in the laboratory contributed to the theory of a feedback loop between the pituitary and fetal gonadal hormones to control sex differentiation. Moore showed that the scrotal sac controls the temperature for the testes, which is necessary for sperm production. He also helped distinguish the hormones testosterone, and androsterone from testicular extracts.

Created2014-02-18
172755-Thumbnail Image.png
Description

Francis Harry Compton Crick, who co-discovered the structure of deoxyribonucleic acid (DNA) in 1953 in Cambridge, England, also developed The Central Dogma of Molecular Biology, and further clarified the relationship between nucleotides and protein synthesis. Crick received the Nobel Prize in Physiology or Medicine that he shared with James Watson

Francis Harry Compton Crick, who co-discovered the structure of deoxyribonucleic acid (DNA) in 1953 in Cambridge, England, also developed The Central Dogma of Molecular Biology, and further clarified the relationship between nucleotides and protein synthesis. Crick received the Nobel Prize in Physiology or Medicine that he shared with James Watson and Maurice Wilkins in 1962 for their discovery of the molecular structure of DNA. Crick's results on the genetic material found in all living organisms advanced theories of inheritance and spurred further studies into the field of genetics and embryology.

Created2013-11-01
Description
In 2014, the Centers for Medicare and Medicaid Services (CMS), which oversees the federal Clinical Laboratories Improvement Amendments (CLIA) program, issued guidance that the CLIA requirements apply when researchers seek to return individual-level research findings to study participants or their physician (Centers for Medicare & Medicaid Services, 2014). The present

In 2014, the Centers for Medicare and Medicaid Services (CMS), which oversees the federal Clinical Laboratories Improvement Amendments (CLIA) program, issued guidance that the CLIA requirements apply when researchers seek to return individual-level research findings to study participants or their physician (Centers for Medicare & Medicaid Services, 2014). The present study explores the stance of U.S. Institutional Review Boards (IRBs) toward the applicability of and compliance with the CLIA regulations when studies plan to return individual research results (RIRR). I performed a document content analysis of 73 IRB policies and supporting documents from 30 United States (U.S.) institutions funded for biomedical research by the National Institutes of Health in 2017. Documents analyzed included policies, procedures, guidance, protocol and consent templates, and miscellaneous documents (such as IRB presentations) found to address the RIRR to study participants. I used qualitative content and document analysis to identify themes across institutions related to the CLIA regulations and the RIRR. Basic descriptive statistics were used to represent the data quantitatively. The study found that 96.67% (n=29) of institutions had documents that addressed the RIRR to participants. The majority of the institutions had at least one document that referenced the CLIA regulations when discussing the practice of disclosing participant-specific results [76.67% (n=23)]. The majority of institutions [56.67% (n=17)] indicated that they require compliance with the CLIA regulations for returning individual study findings to participants, while 13.33% (n=4) recommended compliance. The intent of two (6.67%) institutions was vague or unclear, while seven (26.67%) institutions were silent on the topic altogether. Of the 23 institutions that referenced “CLIA” in their documents, 52.17% only mentioned CLIA in a one or two-sentence blurb, providing very little guidance to investigators. The study results provide evidence that the majority of U.S. biomedical institutions require or recommend compliance with CLIA stipulations when investigators intend to return individual research results to study participants. However, the data indicates there is heterogeneity and variation in the quality of the guidance provided.
ContributorsBuchholtz, Stephanie (Author) / Robert, Jason S. (Thesis advisor) / Ellison, Karin D. (Committee member) / Carpten, John D. (Committee member) / Craig, David W. (Committee member) / Marchant, Gary E. (Committee member) / Arizona State University (Publisher)
Created2021