Matching Items (14)
Filtering by

Clear all filters

149753-Thumbnail Image.png
Description
Molybdenum (Mo) is a key trace nutrient for biological assimilation of nitrogen, either as nitrogen gas (N2) or nitrate (NO3-). Although Mo is the most abundant metal in seawater (105 nM), its concentration is low (<5 nM) in most freshwaters today, and it was scarce in the ocean before 600

Molybdenum (Mo) is a key trace nutrient for biological assimilation of nitrogen, either as nitrogen gas (N2) or nitrate (NO3-). Although Mo is the most abundant metal in seawater (105 nM), its concentration is low (<5 nM) in most freshwaters today, and it was scarce in the ocean before 600 million years ago. The use of Mo for nitrogen assimilation can be understood in terms of the changing Mo availability through time; for instance, the higher Mo content of eukaryotic vs. prokaryotic nitrate reductase may have stalled proliferation of eukaryotes in low-Mo Proterozoic oceans. Field and laboratory experiments were performed to study Mo requirements for NO3- assimilation and N2 fixation, respectively. Molybdenum-nitrate addition experiments at Castle Lake, California revealed interannual and depth variability in plankton community response, perhaps resulting from differences in species composition and/or ammonium availability. Furthermore, lake sediments were elevated in Mo compared to soils and bedrock in the watershed. Box modeling suggested that the largest source of Mo to the lake was particulate matter from the watershed. Month-long laboratory experiments with heterocystous cyanobacteria (HC) showed that <1 nM Mo led to low N2 fixation rates, while 10 nM Mo was sufficient for optimal rates. At 1500 nM Mo, freshwater HC hyperaccumulated Mo intercellularly, whereas coastal HC did not. These differences in storage capacity were likely due to the presence in freshwater HC of the small molybdate-binding protein, Mop, and its absence in coastal and marine cyanobacterial species. Expression of the mop gene was regulated by Mo availability in the freshwater HC species Nostoc sp. PCC 7120. Under low Mo (<1 nM) conditions, mop gene expression was up-regulated compared to higher Mo (150 and 3000 nM) treatments, but the subunit composition of the Mop protein changed, suggesting that Mop does not bind Mo in the same manner at <1 nM Mo that it can at higher Mo concentrations. These findings support a role for Mop as a Mo storage protein in HC and suggest that freshwater HC control Mo cellular homeostasis at the post-translational level. Mop's widespread distribution in prokaryotes lends support to the theory that it may be an ancient protein inherited from low-Mo Precambrian oceans.
ContributorsGlass, Jennifer (Author) / Anbar, Ariel D (Thesis advisor) / Shock, Everett L (Committee member) / Jones, Anne K (Committee member) / Hartnett, Hilairy E (Committee member) / Elser, James J (Committee member) / Fromme, Petra (Committee member) / Arizona State University (Publisher)
Created2011
152282-Thumbnail Image.png
Description
Black carbon (BC) is the product of incomplete combustion of biomass and fossil fuels. It is found ubiquitously in nature and is relevant to studies in atmospheric science, soil science, oceanography, and anthropology. Black carbon is best described using a combustion continuum that sub-classifies BC into slightly charred biomass, char,

Black carbon (BC) is the product of incomplete combustion of biomass and fossil fuels. It is found ubiquitously in nature and is relevant to studies in atmospheric science, soil science, oceanography, and anthropology. Black carbon is best described using a combustion continuum that sub-classifies BC into slightly charred biomass, char, charcoal and soot. These sub-classifications range in particle size, formation temperature, and relative reactivity. Interest in BC has increased because of its role in the long-term storage of organic matter and the biogeochemistry of urban areas. The global BC budget is unbalanced. Production of BC greatly outweighs decomposition of BC. This suggests that there are unknown or underestimated BC removal processes, and it is likely that some of these processes are occurring in soils. However, little is known about BC reactivity in soil and especially in desert soil. This work focuses on soot BC, which is formed at higher temperatures and has a lower relative reactivity than other forms of BC. Here, I assess the contribution of soot BC to central AZ soils and use the isotopic composition of soot BC to identify sources of soot BC. Soot BC is a significant (31%) fraction of the soil organic matter in central AZ and this work suggests that desert and urban soils may be a storage reservoir for soot BC. I further identify previously unknown removal processes of soot BC found naturally in soil and demonstrate that soil soot BC undergoes abiotic (photo-oxidation) and biotic reactions. Not only is soot BC degraded by these processes, but its chemical composition is altered, suggesting that soot BC contains some chemical moieties that are more reactive than others. Because soot BC demonstrates both refractory and reactive character, it is likely that the structure of soot BC; therefore, its interactions in the environment are complex and it is not simply a recalcitrant material.
ContributorsHamilton, George (Author) / Hartnett, Hilairy E (Thesis advisor) / Herckes, Pierre (Committee member) / Hall, Sharon (Committee member) / Arizona State University (Publisher)
Created2013
134617-Thumbnail Image.png
Description
Objectives: The objective of this research is to develop a better understanding of the ways in which Transition Analysis estimates differ from traditional estimates in terms of age-at-death point estimation and inter-observer error. Materials and methods: In order to achieve the objectives of the research, 71 adult individuals from an

Objectives: The objective of this research is to develop a better understanding of the ways in which Transition Analysis estimates differ from traditional estimates in terms of age-at-death point estimation and inter-observer error. Materials and methods: In order to achieve the objectives of the research, 71 adult individuals from an archaeological site in northern Sudan were subjected to Transition Analysis age estimation by the author, a beginner-level osteologist. These estimates were compared to previously produced traditional multifactorial age estimates for these individuals, as well as a small sample of Transition Analysis estimates produced by an intermediate-level investigator. Results: Transition Analysis estimates do not have a high correlation with traditional estimates of age at death, especially when those estimates fall within middle or old adult age ranges. The misalignment of beginner- and intermediate-level Transition Analysis age estimations calls into question intra-method as well as inter-method replicability of age estimations. Discussion: Although the poor overall correlation of Transition Analysis estimates and traditional estimates in this study might be blamed on the relatively low experience level of the analyst, the results cast doubt on the replicability of Transition Analysis estimations, echoing the Bethard's (2005) results on a known-age sample. The results also question the validity of refined age estimates produced for individuals previously estimated to be in the 50+ age range by traditional methods and suggest that Transition Analysis tends to produce younger estimates than its traditional counterparts. Key words: age estimation, Transition Analysis, human osteology, observer error
ContributorsPhillips, Megann M. (Author) / Baker, Brenda (Thesis director) / Norris, Annie Laurie (Committee member) / School of International Letters and Cultures (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
157115-Thumbnail Image.png
Description
Migrations, past and present, fundamentally influence human interaction, community building, and social evolution. Studies of contemporary migrations demonstrate that the form and intensity of interaction migrants maintain between homeland and host communities shape social dynamics, innovations, and identities. This dissertation applies a contemporary theoretical framework and biogeochemical analyses to elucidate

Migrations, past and present, fundamentally influence human interaction, community building, and social evolution. Studies of contemporary migrations demonstrate that the form and intensity of interaction migrants maintain between homeland and host communities shape social dynamics, innovations, and identities. This dissertation applies a contemporary theoretical framework and biogeochemical analyses to elucidate the scale, processes, and impacts of migration in the hinterland of the pre-Hispanic Tiwanaku polity (ca. AD 500-1100). Social diversity is examined by reconstructing the migration histories and dietary choices of individuals interred at the Tiwanaku-affiliated site of Omo M10 in the Moquegua Valley of southern Peru.

Radiogenic strontium and stable oxygen isotope data from human dental and skeletal elements are used to characterize intra- and inter-individual paleomobility patterns at Omo M10. When contextualized with archaeological evidence, these data reveal multigenerational interaction through migration between communities in the highland Tiwanaku heartland and at Omo M10. The observed greater mobility of females and juveniles at Omo M10 indicates that women and families played an essential role in maintaining social relationships and persistent cultural continuity in Moquegua Tiwanaku life. Contact with the highlands waned over time as disruption in the urban highland centers likely weakened ties to peripheral lowland communities.

Stable carbon and nitrogen data from human dental and skeletal elements are employed to estimate intra- and inter-individual paleodietary patterns. Results indicate diet at Omo M10 varied depending on an individual’s community affiliation, sex, age, and level of mobility; diet broadly changed over time with shifting levels of interaction with highland Tiwanaku communities. Intra-individual biogeochemical analyses of migration and diet at Omo M10 contribute a nuanced perspective on the diverse experiences of multigenerational colonists on the periphery of the Tiwanaku polity.
ContributorsDahlstedt, Allisen Cecelia (Author) / Knudson, Kelly J. (Thesis advisor) / Buikstra, Jane E. (Committee member) / Goldstein, Paul S (Committee member) / Arizona State University (Publisher)
Created2019
153987-Thumbnail Image.png
Description
This dissertation addresses the role of kinship and residential mobility during the transition from Final Neolithic to Early Bronze Age (ca. 3500 – 2500 BC) in Attica, Greece. It examines descent systems, ancestor formation, and the interplay between biological, social, and spatial structure in mortuary practices. It also evaluates the

This dissertation addresses the role of kinship and residential mobility during the transition from Final Neolithic to Early Bronze Age (ca. 3500 – 2500 BC) in Attica, Greece. It examines descent systems, ancestor formation, and the interplay between biological, social, and spatial structure in mortuary practices. It also evaluates the nature and degree of residential mobility and its potential role in the formation and maintenance of social networks. Archaeological hypotheses on the kin-based structure of formal cemeteries, the familial use of collective tombs, marriage practices and mate exchange, and relocation were tested focusing on the Early Helladic cemetery of Tsepi at Marathon. Tsepi constitutes the earliest formally organized cemetery on the Greek mainland and it has also contributed to enduring debates over the nature of the interaction between the eastern Attic coast and the central Aegean islands.

This study integrates osteological, biogeochemical, and archaeological data. Inherited dental and cranial features were used to examine biological relatedness and postmarital residence (biodistance analysis). Biochemical analysis of archaeological and modern samples was conducted to examine the geographic origins of the individuals buried in the cemetery and reconstruct mobility patterns. Osteological and biogeochemical data were interpreted in conjunction with archaeological and ethnographic/ethnohistoric data.

The results generally supported a relationship between spatial organization and biological relatedness based on phenotypic similarity at Tsepi. Postmarital residence analysis showed exogamous practices and tentatively supported higher male than female mobility. This practice, along with dietary inferences, could also be suggestive of maritime activities. Biogeochemical analysis showed a local character for the cemetery sample (96%). The common provenance of the three non-local individuals might reflect a link between Tsepi and a single locale. Burial location was not determined by provenance or solely by biological relatedness. Overall, the results point towards more nuanced reconstructions of mobility in prehistoric Aegean and suggest that burial location depended on a complex set of inter-individual relationships and collective identities. The contextualized bioarchaeological approach applied in this study added to the anthropological investigations of social practices such as kin relations (e.g., biological, marital, social kinship) and residential relocation as diachronic mechanisms of integration, adaptation, or differentiation.
ContributorsPrevedorou, Eleni Anna (Author) / Buikstra, Jane E. (Thesis advisor) / Knudson, Kelly J. (Committee member) / Stojanowski, Chris M (Committee member) / Fox, Sherry C. (Committee member) / Rutter, Jeremy B. (Committee member) / Arizona State University (Publisher)
Created2015
154193-Thumbnail Image.png
Description
The Middle Stone Age archaeological record from the south coast of South Africa contains significant evidence for early modern human behavior. The south coast is within the modern Greater Cape Floristic Region (GCFR), which in the present-day encompasses the entirety of South Africa’s Winter Rainfall Zone (WRZ) and contains unique

The Middle Stone Age archaeological record from the south coast of South Africa contains significant evidence for early modern human behavior. The south coast is within the modern Greater Cape Floristic Region (GCFR), which in the present-day encompasses the entirety of South Africa’s Winter Rainfall Zone (WRZ) and contains unique vegetation elements that have been hypothesized to be of high utility to hunter-gatherer populations. Extant paleoenvironmental proxy records for the Pleistocene in the region often indicate evidence for more open environments during the past than occur in the area in the present-day, while climate models suggest glacial presence of the WRZ that would support maintenance of C3-predominant GCFR vegetation.

These paleoenvironmental proxies sample past environments at geographic scales that are often regional. The GCFR flora is hyper-diverse, and glacial climate change-driven impacts on local vegetation could have been highly variable over relatively small geographic scales. Proxy records that are circumscribed in their geographic scale are thus key to our understanding of ancient environments at particular MSA archaeological localities.

Micromammal fossil teeth are now recognized as an abundant potential reservoir of paleoenvironmental proxy data at an extremely local scale. This study analyzed modern micromammal teeth obtained from raptor pellets at three locations on the south coast. Stable carbon isotope analysis indicates that the modern micromammals from the taxa sampled consume a wide range of δ13Cplant on the landscape when it is available, and thus stable carbon isotope analysis of micromammal teeth should act as a proxy for the range of available δ13Cdiet in a circumscribed area of vegetation.

Micromammal stable carbon isotope data obtained from specimens from one of the few well-dated MIS6-MIS5 sequences in the region (Pinnacle Point sites 13B, 30, and 9C). δ13Cenamel values for the taxa sampled indicate diets that are primarily C3, and there is almost no evidence for a dietary C4 grass component in any of the sampled specimens. This indicates that, at a minimum, pockets of C3 vegetation associated with the GCFR were likely available to hunter-gatherers at Pinnacle Point throughout the Middle and Late Pleistocene.
ContributorsWilliams, Hope Marie (Author) / Marean, Curtis W (Thesis advisor) / Knudson, Kelly J. (Thesis advisor) / Reed, Kaye (Committee member) / Arizona State University (Publisher)
Created2015
153476-Thumbnail Image.png
Description
The focus of this thesis is to study dissolved organic carbon composition and reactivity along the Colorado and Green Rivers. Dissolved organic carbon (DOC) in large-scale, managed rivers is relatively poorly studied as most literature has focused on pristine unmanaged rivers. The Colorado River System is the 7th largest in

The focus of this thesis is to study dissolved organic carbon composition and reactivity along the Colorado and Green Rivers. Dissolved organic carbon (DOC) in large-scale, managed rivers is relatively poorly studied as most literature has focused on pristine unmanaged rivers. The Colorado River System is the 7th largest in the North America; there are seventeen large dams along the Colorado and Green River. DOC in rivers and in the lakes formed by dams (reservoirs) undergo photo-chemical and bio-degradation. DOC concentration and composition in these systems were investigated using bulk concentration, optical properties, and fluorescence spectroscopy. The riverine DOC concentration decreased from upstream to downstream but there was no change in the specific ultraviolet absorbance at 254 nm (SUVA254). Total fluorescence also decreased along the river. In general, the fluorescence index (FI) increased slightly, the humification index (HIX) decreased, and the freshness index (β/α) increased from upstream to downstream. Photo-oxidation and biodegradation experiments were used to determine if the observed changes in DOC composition along the river could be driven by these biogeochemical alteration processes.

In two-week natural sunlight photo-oxidation experiments the DOC concentration did not change, while the SUVA254 and TF decreased. In addition, the FI and ‘freshness’ increased and HIX decreased during photo-oxidation. Photo-oxidation can explain the upstream to downstream trends for TF, FI, HIX, and freshness observed in river water. Serial photo-oxidation and biodegradation experiments were performed on water collected from three sites along the Colorado River. Bulk DOC concentration in all samples decreased during the biodegradation portion of the study, but DOC bioavailability was lower in samples that were photo-oxidized prior to the bioavailability study.

The upstream to downstream trends in DOC concentration and composition along the river can be explained by a combination of photo-chemical and microbial degradation. The bulk DOC concentration change is primarily driven by microbial degradation, while the changes in the composition of the fluorescent DOC are driven by photo-oxidation.
ContributorsBowman, Margaret (Author) / Hartnett, Hilairy E (Thesis advisor) / Hayes, Mark A. (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2015
155542-Thumbnail Image.png
Description
This project investigates social mobility in premodern states through a contextualized program of isotopic research at the archaeological site of Teotihuacan, Mexico. Due to the lack of a concrete methodology that can be used to recover information concerning rates of social mobility from archaeological remains, many traditional archaeological models either

This project investigates social mobility in premodern states through a contextualized program of isotopic research at the archaeological site of Teotihuacan, Mexico. Due to the lack of a concrete methodology that can be used to recover information concerning rates of social mobility from archaeological remains, many traditional archaeological models either ignore social mobility or assume that boundaries between socioeconomic strata within archaic states were largely impermeable. In this research, I develop a new methodological approach to the identification of socially mobile individuals in the archaeological record based on changes in the diet across the lifecourse that can be detected through isotopic paleodietary indicators. Drawing upon cross-cultural research surrounding the relationship between diet and socioeconomic status and established methodologies in the biogeochemical analysis of human remains, this methodological approach provides a basis for broader comparative studies evaluating the nature of social mobility within archaic states.

I then test the practical application of this methodology by applying it to a mortuary sample including individuals from distinctive socioeconomic groups from the pre-Hispanic city of Teotihuacan, Mexico. The study recovers and uses the dietary isotope ratios within bone and tooth samples from 81 individuals buried throughout the city 1) to define the dietary correlates of wealth and status at Teotihuacan and 2) to identify individuals displaying lifetime dietary changes consistent with changes in socioeconomic status. In addition to supplementing our current understanding of Teotihuacan foodways and processes of geographic migration into the city, I identify an adult male individual from the La Ventilla B apartment compound who displays dietary changes throughout his life that are consistent with downward socioeconomic mobility from a high status socioeconomic group in early adolescence to an intermediate status group later in adulthood. I conclude by identifying ways to move forward with the comparative archaeology of socioeconomic mobility in premodern contexts and highlight the applicability of archaeological information to our understanding of present-day processes of social mobility.
ContributorsNado, Kristin Lynn (Author) / Buikstra, Jane E. (Thesis advisor) / Knudson, Kelly J. (Committee member) / Smith, Michael E. (Committee member) / Robertson, Ian G (Committee member) / Arizona State University (Publisher)
Created2017
156058-Thumbnail Image.png
Description
In many natural systems aqueous geochemical conditions dictate the reaction pathways of organic compounds. Geologic settings that span wide ranges in temperature, pressure, and composition vastly alter relative reaction rates and resulting organic abundances. The dependence of organic reactions on these variables contributes to planetary-scale nutrient cycling, and suggests that

In many natural systems aqueous geochemical conditions dictate the reaction pathways of organic compounds. Geologic settings that span wide ranges in temperature, pressure, and composition vastly alter relative reaction rates and resulting organic abundances. The dependence of organic reactions on these variables contributes to planetary-scale nutrient cycling, and suggests that relative abundances of organic compounds can reveal information about inaccessible geologic environments, whether from the terrestrial subsurface, remote planetary settings, or even the distant past (if organic abundances are well preserved). Despite their relevance to planetary modeling and exploration, organic reactions remain poorly characterized under geochemically relevant conditions, especially in terms of their reaction kinetics, mechanisms, and equilibria.

In order to better understand organic transformations in natural systems, the reactivities of oxygen- and nitrogen-bearing organic functional groups were investigated under experimental hydrothermal conditions, at 250°C and 40 bar. The model compounds benzylamine and α-methylbenzylamine were used as analogs to environmentally relevant amines, ultimately elucidating two dominant deamination mechanisms for benzylamine, SN1 and SN2, and a single SN1 mechanism for deamination of α-methylbenzylamine. The presence of unimolecular and bimolecular mechanisms has implications for temperature dependent kinetics, indicating that Arrhenius rate extrapolation is currently unreliable for deamination.

Hydrothermal experiments with benzyl alcohol, benzylamine, dibenzylamine, or tribenzylamine as the starting material indicate that substitution reactions between these compounds (and others) are reversible and approach metastable equilibrium after 72 hours. These findings suggest that relative ratios of organic compounds capable of substitution reactions could be targeted as tracers of inaccessible geochemical conditions.

Metastable equilibria for organic reactions were investigated in a natural low-temperature serpentinizing continental system. Serpentinization is a water-rock reaction which generates hyperalkaline, reducing conditions. Thermodynamic calculations were performed for reactions between dissolved inorganic carbon and hydrogen to produce methane, formate, and acetate. Quantifying conditions that satisfy equilibrium for these reactions allows subsurface conditions to be predicted. These calculations also lead to hypotheses regarding active microbial processes during serpentinization.
ContributorsRobinson, Kirtland J (Author) / Shock, Everett L (Thesis advisor) / Herckes, Pierre (Committee member) / Hartnett, Hilairy E (Committee member) / Anbar, Ariel D (Committee member) / Arizona State University (Publisher)
Created2017
158124-Thumbnail Image.png
Description
Nitrous oxide (N2O) is an important greenhouse gas and an oxidant respired by a

diverse range of anaerobic microbes, but its sources and sinks are poorly understood. The overarching goal of my dissertation is to explore abiotic N2O formation and microbial N2O consumption across reducing environments of the early and modern

Nitrous oxide (N2O) is an important greenhouse gas and an oxidant respired by a

diverse range of anaerobic microbes, but its sources and sinks are poorly understood. The overarching goal of my dissertation is to explore abiotic N2O formation and microbial N2O consumption across reducing environments of the early and modern Earth. By combining experiments as well as diffusion and atmospheric modeling, I present evidence that N2O production can be catalyzed on iron mineral surfaces that may have been present in shallow waters of the Archean ocean. Using photochemical models, I showed that tropospheric N2O concentrations close to modern ones (ppb range) were possible before O2 accumulated. In peatlands of the Amazon basin (modern Earth), unexpected abiotic activity became apparent under anoxic conditions. However, care has to be taken to adequately disentangle abiotic from biotic reactions. I identified significant sterilant-induced changes in Fe2+ and dissolved organic matter pools (determined by fluorescence spectroscopy). Among all chemical and physical sterilants tested, γ - irradiation showed the least effect on reactant pools. Targeting geochemically diverse peatlands across Central and South America, I present evidence that coupled abiotic and biotic cycling of N2O could be a widespread phenomenon. Using isotopic tracers in the field, I showed that abiotic N2O fluxes rival biotic ones under in-situ conditions. Moreover, once N2O is produced, it is rapidly consumed by N2O-reducing microbes. Using amplicon sequencing and metagenomics, I demonstrated that this surprising N2O sink potential is associated with diverse bacteria, including the recently discovered clade II that is present in high proportions at Amazonian sites based on nosZ quantities. Finally, to evaluate the impact of nitrogen oxides on methane production in peatlands, I characterized soil nitrite (NO2–) and N2O abundances along soil profiles. I complemented field analyses with molecular work by deploying amplicon-based 16S rRNA and mcrA sequencing. The diversity and activity of soil methanogens was affected by the presence of NO2– and N2O, suggesting that methane emissions could be influenced by N2O cycling dynamics. Overall, my work proposes a key role for N2O in Earth systems across time and a central position in tropical microbial ecosystems.
ContributorsBuessecker, Steffen (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Glass, Jennifer B (Committee member) / Hall, Sharon J (Committee member) / Arizona State University (Publisher)
Created2020