Matching Items (8)
Filtering by

Clear all filters

152282-Thumbnail Image.png
Description
Black carbon (BC) is the product of incomplete combustion of biomass and fossil fuels. It is found ubiquitously in nature and is relevant to studies in atmospheric science, soil science, oceanography, and anthropology. Black carbon is best described using a combustion continuum that sub-classifies BC into slightly charred biomass, char,

Black carbon (BC) is the product of incomplete combustion of biomass and fossil fuels. It is found ubiquitously in nature and is relevant to studies in atmospheric science, soil science, oceanography, and anthropology. Black carbon is best described using a combustion continuum that sub-classifies BC into slightly charred biomass, char, charcoal and soot. These sub-classifications range in particle size, formation temperature, and relative reactivity. Interest in BC has increased because of its role in the long-term storage of organic matter and the biogeochemistry of urban areas. The global BC budget is unbalanced. Production of BC greatly outweighs decomposition of BC. This suggests that there are unknown or underestimated BC removal processes, and it is likely that some of these processes are occurring in soils. However, little is known about BC reactivity in soil and especially in desert soil. This work focuses on soot BC, which is formed at higher temperatures and has a lower relative reactivity than other forms of BC. Here, I assess the contribution of soot BC to central AZ soils and use the isotopic composition of soot BC to identify sources of soot BC. Soot BC is a significant (31%) fraction of the soil organic matter in central AZ and this work suggests that desert and urban soils may be a storage reservoir for soot BC. I further identify previously unknown removal processes of soot BC found naturally in soil and demonstrate that soil soot BC undergoes abiotic (photo-oxidation) and biotic reactions. Not only is soot BC degraded by these processes, but its chemical composition is altered, suggesting that soot BC contains some chemical moieties that are more reactive than others. Because soot BC demonstrates both refractory and reactive character, it is likely that the structure of soot BC; therefore, its interactions in the environment are complex and it is not simply a recalcitrant material.
ContributorsHamilton, George (Author) / Hartnett, Hilairy E (Thesis advisor) / Herckes, Pierre (Committee member) / Hall, Sharon (Committee member) / Arizona State University (Publisher)
Created2013
153476-Thumbnail Image.png
Description
The focus of this thesis is to study dissolved organic carbon composition and reactivity along the Colorado and Green Rivers. Dissolved organic carbon (DOC) in large-scale, managed rivers is relatively poorly studied as most literature has focused on pristine unmanaged rivers. The Colorado River System is the 7th largest in

The focus of this thesis is to study dissolved organic carbon composition and reactivity along the Colorado and Green Rivers. Dissolved organic carbon (DOC) in large-scale, managed rivers is relatively poorly studied as most literature has focused on pristine unmanaged rivers. The Colorado River System is the 7th largest in the North America; there are seventeen large dams along the Colorado and Green River. DOC in rivers and in the lakes formed by dams (reservoirs) undergo photo-chemical and bio-degradation. DOC concentration and composition in these systems were investigated using bulk concentration, optical properties, and fluorescence spectroscopy. The riverine DOC concentration decreased from upstream to downstream but there was no change in the specific ultraviolet absorbance at 254 nm (SUVA254). Total fluorescence also decreased along the river. In general, the fluorescence index (FI) increased slightly, the humification index (HIX) decreased, and the freshness index (β/α) increased from upstream to downstream. Photo-oxidation and biodegradation experiments were used to determine if the observed changes in DOC composition along the river could be driven by these biogeochemical alteration processes.

In two-week natural sunlight photo-oxidation experiments the DOC concentration did not change, while the SUVA254 and TF decreased. In addition, the FI and ‘freshness’ increased and HIX decreased during photo-oxidation. Photo-oxidation can explain the upstream to downstream trends for TF, FI, HIX, and freshness observed in river water. Serial photo-oxidation and biodegradation experiments were performed on water collected from three sites along the Colorado River. Bulk DOC concentration in all samples decreased during the biodegradation portion of the study, but DOC bioavailability was lower in samples that were photo-oxidized prior to the bioavailability study.

The upstream to downstream trends in DOC concentration and composition along the river can be explained by a combination of photo-chemical and microbial degradation. The bulk DOC concentration change is primarily driven by microbial degradation, while the changes in the composition of the fluorescent DOC are driven by photo-oxidation.
ContributorsBowman, Margaret (Author) / Hartnett, Hilairy E (Thesis advisor) / Hayes, Mark A. (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2015
149753-Thumbnail Image.png
Description
Molybdenum (Mo) is a key trace nutrient for biological assimilation of nitrogen, either as nitrogen gas (N2) or nitrate (NO3-). Although Mo is the most abundant metal in seawater (105 nM), its concentration is low (<5 nM) in most freshwaters today, and it was scarce in the ocean before 600

Molybdenum (Mo) is a key trace nutrient for biological assimilation of nitrogen, either as nitrogen gas (N2) or nitrate (NO3-). Although Mo is the most abundant metal in seawater (105 nM), its concentration is low (<5 nM) in most freshwaters today, and it was scarce in the ocean before 600 million years ago. The use of Mo for nitrogen assimilation can be understood in terms of the changing Mo availability through time; for instance, the higher Mo content of eukaryotic vs. prokaryotic nitrate reductase may have stalled proliferation of eukaryotes in low-Mo Proterozoic oceans. Field and laboratory experiments were performed to study Mo requirements for NO3- assimilation and N2 fixation, respectively. Molybdenum-nitrate addition experiments at Castle Lake, California revealed interannual and depth variability in plankton community response, perhaps resulting from differences in species composition and/or ammonium availability. Furthermore, lake sediments were elevated in Mo compared to soils and bedrock in the watershed. Box modeling suggested that the largest source of Mo to the lake was particulate matter from the watershed. Month-long laboratory experiments with heterocystous cyanobacteria (HC) showed that <1 nM Mo led to low N2 fixation rates, while 10 nM Mo was sufficient for optimal rates. At 1500 nM Mo, freshwater HC hyperaccumulated Mo intercellularly, whereas coastal HC did not. These differences in storage capacity were likely due to the presence in freshwater HC of the small molybdate-binding protein, Mop, and its absence in coastal and marine cyanobacterial species. Expression of the mop gene was regulated by Mo availability in the freshwater HC species Nostoc sp. PCC 7120. Under low Mo (<1 nM) conditions, mop gene expression was up-regulated compared to higher Mo (150 and 3000 nM) treatments, but the subunit composition of the Mop protein changed, suggesting that Mop does not bind Mo in the same manner at <1 nM Mo that it can at higher Mo concentrations. These findings support a role for Mop as a Mo storage protein in HC and suggest that freshwater HC control Mo cellular homeostasis at the post-translational level. Mop's widespread distribution in prokaryotes lends support to the theory that it may be an ancient protein inherited from low-Mo Precambrian oceans.
ContributorsGlass, Jennifer (Author) / Anbar, Ariel D (Thesis advisor) / Shock, Everett L (Committee member) / Jones, Anne K (Committee member) / Hartnett, Hilairy E (Committee member) / Elser, James J (Committee member) / Fromme, Petra (Committee member) / Arizona State University (Publisher)
Created2011
156058-Thumbnail Image.png
Description
In many natural systems aqueous geochemical conditions dictate the reaction pathways of organic compounds. Geologic settings that span wide ranges in temperature, pressure, and composition vastly alter relative reaction rates and resulting organic abundances. The dependence of organic reactions on these variables contributes to planetary-scale nutrient cycling, and suggests that

In many natural systems aqueous geochemical conditions dictate the reaction pathways of organic compounds. Geologic settings that span wide ranges in temperature, pressure, and composition vastly alter relative reaction rates and resulting organic abundances. The dependence of organic reactions on these variables contributes to planetary-scale nutrient cycling, and suggests that relative abundances of organic compounds can reveal information about inaccessible geologic environments, whether from the terrestrial subsurface, remote planetary settings, or even the distant past (if organic abundances are well preserved). Despite their relevance to planetary modeling and exploration, organic reactions remain poorly characterized under geochemically relevant conditions, especially in terms of their reaction kinetics, mechanisms, and equilibria.

In order to better understand organic transformations in natural systems, the reactivities of oxygen- and nitrogen-bearing organic functional groups were investigated under experimental hydrothermal conditions, at 250°C and 40 bar. The model compounds benzylamine and α-methylbenzylamine were used as analogs to environmentally relevant amines, ultimately elucidating two dominant deamination mechanisms for benzylamine, SN1 and SN2, and a single SN1 mechanism for deamination of α-methylbenzylamine. The presence of unimolecular and bimolecular mechanisms has implications for temperature dependent kinetics, indicating that Arrhenius rate extrapolation is currently unreliable for deamination.

Hydrothermal experiments with benzyl alcohol, benzylamine, dibenzylamine, or tribenzylamine as the starting material indicate that substitution reactions between these compounds (and others) are reversible and approach metastable equilibrium after 72 hours. These findings suggest that relative ratios of organic compounds capable of substitution reactions could be targeted as tracers of inaccessible geochemical conditions.

Metastable equilibria for organic reactions were investigated in a natural low-temperature serpentinizing continental system. Serpentinization is a water-rock reaction which generates hyperalkaline, reducing conditions. Thermodynamic calculations were performed for reactions between dissolved inorganic carbon and hydrogen to produce methane, formate, and acetate. Quantifying conditions that satisfy equilibrium for these reactions allows subsurface conditions to be predicted. These calculations also lead to hypotheses regarding active microbial processes during serpentinization.
ContributorsRobinson, Kirtland J (Author) / Shock, Everett L (Thesis advisor) / Herckes, Pierre (Committee member) / Hartnett, Hilairy E (Committee member) / Anbar, Ariel D (Committee member) / Arizona State University (Publisher)
Created2017
134617-Thumbnail Image.png
Description
Objectives: The objective of this research is to develop a better understanding of the ways in which Transition Analysis estimates differ from traditional estimates in terms of age-at-death point estimation and inter-observer error. Materials and methods: In order to achieve the objectives of the research, 71 adult individuals from an

Objectives: The objective of this research is to develop a better understanding of the ways in which Transition Analysis estimates differ from traditional estimates in terms of age-at-death point estimation and inter-observer error. Materials and methods: In order to achieve the objectives of the research, 71 adult individuals from an archaeological site in northern Sudan were subjected to Transition Analysis age estimation by the author, a beginner-level osteologist. These estimates were compared to previously produced traditional multifactorial age estimates for these individuals, as well as a small sample of Transition Analysis estimates produced by an intermediate-level investigator. Results: Transition Analysis estimates do not have a high correlation with traditional estimates of age at death, especially when those estimates fall within middle or old adult age ranges. The misalignment of beginner- and intermediate-level Transition Analysis age estimations calls into question intra-method as well as inter-method replicability of age estimations. Discussion: Although the poor overall correlation of Transition Analysis estimates and traditional estimates in this study might be blamed on the relatively low experience level of the analyst, the results cast doubt on the replicability of Transition Analysis estimations, echoing the Bethard's (2005) results on a known-age sample. The results also question the validity of refined age estimates produced for individuals previously estimated to be in the 50+ age range by traditional methods and suggest that Transition Analysis tends to produce younger estimates than its traditional counterparts. Key words: age estimation, Transition Analysis, human osteology, observer error
ContributorsPhillips, Megann M. (Author) / Baker, Brenda (Thesis director) / Norris, Annie Laurie (Committee member) / School of International Letters and Cultures (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
158124-Thumbnail Image.png
Description
Nitrous oxide (N2O) is an important greenhouse gas and an oxidant respired by a

diverse range of anaerobic microbes, but its sources and sinks are poorly understood. The overarching goal of my dissertation is to explore abiotic N2O formation and microbial N2O consumption across reducing environments of the early and modern

Nitrous oxide (N2O) is an important greenhouse gas and an oxidant respired by a

diverse range of anaerobic microbes, but its sources and sinks are poorly understood. The overarching goal of my dissertation is to explore abiotic N2O formation and microbial N2O consumption across reducing environments of the early and modern Earth. By combining experiments as well as diffusion and atmospheric modeling, I present evidence that N2O production can be catalyzed on iron mineral surfaces that may have been present in shallow waters of the Archean ocean. Using photochemical models, I showed that tropospheric N2O concentrations close to modern ones (ppb range) were possible before O2 accumulated. In peatlands of the Amazon basin (modern Earth), unexpected abiotic activity became apparent under anoxic conditions. However, care has to be taken to adequately disentangle abiotic from biotic reactions. I identified significant sterilant-induced changes in Fe2+ and dissolved organic matter pools (determined by fluorescence spectroscopy). Among all chemical and physical sterilants tested, γ - irradiation showed the least effect on reactant pools. Targeting geochemically diverse peatlands across Central and South America, I present evidence that coupled abiotic and biotic cycling of N2O could be a widespread phenomenon. Using isotopic tracers in the field, I showed that abiotic N2O fluxes rival biotic ones under in-situ conditions. Moreover, once N2O is produced, it is rapidly consumed by N2O-reducing microbes. Using amplicon sequencing and metagenomics, I demonstrated that this surprising N2O sink potential is associated with diverse bacteria, including the recently discovered clade II that is present in high proportions at Amazonian sites based on nosZ quantities. Finally, to evaluate the impact of nitrogen oxides on methane production in peatlands, I characterized soil nitrite (NO2–) and N2O abundances along soil profiles. I complemented field analyses with molecular work by deploying amplicon-based 16S rRNA and mcrA sequencing. The diversity and activity of soil methanogens was affected by the presence of NO2– and N2O, suggesting that methane emissions could be influenced by N2O cycling dynamics. Overall, my work proposes a key role for N2O in Earth systems across time and a central position in tropical microbial ecosystems.
ContributorsBuessecker, Steffen (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Glass, Jennifer B (Committee member) / Hall, Sharon J (Committee member) / Arizona State University (Publisher)
Created2020
158671-Thumbnail Image.png
Description
Mantle derived basalts along the entirety of the Earth’s Mid-Ocean Ridge (MOR) spreading centers are continuously altered by seawater, allowing the hydrosphere to subsume energy and exchange mass with the deep, slowly cooling Earth. Compositional heterogeneities inherent to these basalts—the result of innumerable geophysical and geochemical processes in the mantel

Mantle derived basalts along the entirety of the Earth’s Mid-Ocean Ridge (MOR) spreading centers are continuously altered by seawater, allowing the hydrosphere to subsume energy and exchange mass with the deep, slowly cooling Earth. Compositional heterogeneities inherent to these basalts—the result of innumerable geophysical and geochemical processes in the mantel and crust—generate spatial variation in the equilibrium states toward which these water-rock environments cascade. This alteration results in a unique distribution of precipitate assemblages, hydrothermal fluid chemistries, and energetic landscapes among ecosystems rooted within and above the seafloor. The equilibrium states for the full range of basalt compositional heterogeneity present today are calculated over all appropriate temperatures and extents of reaction with seawater, along with the non-equilibrium mixtures generated when hydrothermal fluids mix back into seawater. These mixes support ancient and diverse ecosystems fed not by the energy of the sun, but by the geochemical energy of the Earth. Facilitated by novel, high throughout code, this effort has yielded a high-resolution compositional database that is mapped back onto all ridge systems. By resolving the chemical and energetic consequences of basalt-seawater interaction to sub-ridge scales, alteration features that are globally homogeneous can be distinguished from those that are locally unique, guiding future field observations with testable geochemical and biochemical predictions.
ContributorsELY, TUCKER (Author) / Shock, Everett L (Thesis advisor) / Till, Christy B. (Committee member) / Walker, Sara I (Committee member) / Anbar, Ariel D (Committee member) / Hartnett, Hilairy E (Committee member) / Arizona State University (Publisher)
Created2020
161543-Thumbnail Image.png
Description
This dissertation examines the interrelationships between stress, frailty, growth, mortality, and diet at the Qinifab School site, Sudan, using a combination of osteological, paleopathological, and biogeochemical methods. The skeletal sample, from the fourth cataract region of Nubia, is comprised of 100 individuals from a Late Meroitic to Christian period (~250-1400

This dissertation examines the interrelationships between stress, frailty, growth, mortality, and diet at the Qinifab School site, Sudan, using a combination of osteological, paleopathological, and biogeochemical methods. The skeletal sample, from the fourth cataract region of Nubia, is comprised of 100 individuals from a Late Meroitic to Christian period (~250-1400 CE) cemetery. Standard osteological methods were used to estimate age and sex, and measurements were taken to assess body dimensions. Preadults were aged by dental and skeletal development, producing two independent ages to categorize individuals as developmentally “normal” or “delayed.” Data were collected on nonspecific indicators of stress, including linear enamel hypoplasias (LEHs), porotic hyperostosis (PH), and cribra orbitalia (CO). In preadults, these were compared to World Health Organization (WHO) growth standards to identify individuals who experienced stunting or wasting. For all ages, evidence of stress was compared with age at death and growth/body size. Finally, stable carbon and nitrogen isotope analyses were conducted on bone collagen and carbonate samples from a representative sample of 60 individuals, of which 46 collagen samples and all carbonates had acceptable preservation.“Delayed” preadults generally showed reduced body size relative to “normal” individuals, they were more likely to be stunted, and their growth trajectories were less similar to WHO standards. However, childhood stress had little impact on adult body size. CO occurred at higher frequencies in preadults and individuals with mixed/active lesions died at younger ages. PH rarely developed before age 6 but was present in most individuals over that age. Individuals with earlier formed LEHs tended to experience more stress overall and die younger. Active/mixed CO was associated with stunting in preadults and reduced brachial index in adults. A greater proportion of individuals in the Christian period were affected by CO compared to the Post-Meroitic. A temporal shift also occurred in diet between the Post-Meroitic and Christian periods based upon the δ13CCOLL and δ15NCOLL values. Lower δ15N and the greater difference in δ13CAP-COLL suggest a shift toward intensified agriculture and decreased use of animal products and a potential dietary etiology for the increase in CO.
ContributorsNorris, Annie Laurie (Author) / Baker, Brenda J (Thesis advisor) / Knudson, Kelly (Committee member) / Dupras, Tosha (Committee member) / Arizona State University (Publisher)
Created2021